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ABSTRACT

Physical data obtained on various-sized equipment must be

correlated in an orderly manner to establish general physical laws

or equations governing the phenomena. Dimensional analysis presents

a mathematical procedure for this correlation. Usual procedures have

been modified in viewpoint and a so-called ARDA dimensional analysis

method of mathematical attack is presented in encyclopedic format.

The methods of application to such domains of physical knowledge as

fluid drag, bubble mechanics and nucleation, convection heat transfer

and tank pressurization.
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SYMBOLS AND NOTATION

Symbols. Symbols adopted as preferred are those that experience

indicates are best to facilitate presentation of the subject and repre-

sent a composite adaption of the various terminology of the literature.

Also given secondarily are symbols in extensive current use at NASA-

MSFC and in current usage.

Detailed lists of symbols are under Symbols.

System of Units. In general the engineering system of units is used

throughout because its familiarity aids in visualizing physical phenomena.

Moreover, a generalized engineering system is used in which there is no

restriction on the number of physical properties considered to be basic.

Thus, relationships are expressed in ibf, ibm, ft and sec which might be

termed an engineering FMLT system.
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ARDA concepts in dimensional analysis, by introducing new

viewpoints and procedures, make possible simpler and yet at the same

time more comprehensive formulation of physical laws governing

complex processes. The ARDA designation signifies Arrangement of

Relationships in Dimensional Analysis (i). Introduction of this analyt-

ical technique minimizes the empirical data required, and the inherent

similarity involved also permits small-scale model testing to replace

many full-scale operating evaluations.

The method is applied to establish such general relationships as

the domain of drag on bodies immersed in fluids.

The development differs somewhat from previous treatments.

In the literature the classic work of Bridgman (i) in 1931 has been

amplified by Langhaar in 1951 (2), Sedov in 1959 (3}, and Ipsen (4) in

i960.

In general the previous attacks have been based on adoption of

an MLT system of units with force F defined in terms of mass m, or an

FLT system of units with m defined in terms ofF. This adoption of a

system of units having a limited number of fundamental dimensions has

limited the scope of dimensional analysis to a series of somewhat

individual solutions to special problems, with inherent confusion and

limitation in comparing the findings of one investigator on one physical

problem with those of a different investigator on a different physical

problem.

With respect to dimensions, mass, force and weight are recognized

as fundamental properties. The English engineering system is used in

which these properties are always distinguished from each other and

clearly indicated as ibm mass, ibf force and Ibw weight, respectively.



ACCELERATION

An end result of dimensional analysis procedures is the obtaining

of dimensionless numbers or parameters in which the units of the numer-

ator are the same as the units of the denominator. Expressions involving

these dimensionless numbers are perfectly general and may, therefore,

be utilized in any consistent system of units.

An encyclopedic format is adopted so that each topic is discussed

under its alphabetical title.

ACCELERATION. Newton's acceleration law written as a unit-consistent

equation in engineering units is:

(mlbmft]J 7J?]
F ibf=

3z.

The modern practice of distinguishing mass from force by the use of the

terms ibm or ibf is most important and has been adopted. This agrees

with the modern metric system in which the force unit newton or N is

clearly distinguished from the mass unit kg preferably written as kgmass

or kgm. The force unitkg is no longer recommended but where used

should be clearly designated as a force unit by use of the term kgf.

The previous equation does not contain weight w or gravity g. For a

discussion of weight see under Weight.

ADVANCE RATIO. See Strouhal Number.

ASSOCIATIVE METHOD. The usual method in dimensional analysis is

to assume that one property is a function of other properties and evaluate

exponents to find a general relation of dimensionless numbers. This

may be designated as the direct method.

The direct method. Many examples are given in this text in the domains

of bubble mechanics, combustion, convection heat transfer, drag,

elasticity, electromagnetic phenomena, magneto-hydrodynamics, nuclea-

tion, pressurization, propellor, etc.

As an example, for the drag domain if

(AF___.)= C(T)a (g)b (ta.f)c (Zft)d (v)e (D)f (gc)g (p)h

Z



ASSOCIATIVE METHOD

Then,

Eu= C(We)a(Fr)b(Re)c(L) d

It will be observed from this example and from many other examples that

the inclusion of certain physical properties in the first equation will lead

to certain dimensionless numbers in the final relationship in which these

physical properties are involved.

•
The property T leads to the Weber number

The property g leads to the Froude number

The property _f leads to the Reynolds number

The propertyL leads to the (L) number

The remaining properties are included in the preceding numbers so that

all properties appear in the final result.

The other domains indicate many other relations as for example N s in the

Strouhal number, IJ in the Damkohler number, etc.

The associative method. An alternate method now suggests itself. In

this method it appears that with experience one could examine the original

properties and because of the known association of certain dimensionless

numbers with physical properties, write the final equation directly in terms

of usual basic dimensionless numbers. In the case of physical properties

for which corresponding dimensionless numbers are not known it is necessary

to go through the basic ARDA dimensional analysis procedure.

General law of dimensional analysis. A general law may be stated that for

all phenomena the general property function equation

A = f(B, C, D, E .... )

results in the general dimensionless number equation:

N = C(NI) a (Nz) b (N3) c ....

In any particular application or domain, only a few properties

involved in that particular application or domain are included, thus,



BOND NUM BEiR

resulting ina dimensionless number equation with relatively few terms.
These particular equations might be considered to be special cases of
the general all inclusive equations where the exponents are zero so that
the value of the property raised to the zero power is unity.

A study of the various domain equations with respect to the dimension-
less number related to a physical quantity resulted in a tabulation given
under the heading Dimensionless Numbers Associated with Properties.

It should be remembered that L and D are frequently interchangeable.
Z is usually a representative length which when a diameter is present
is a D. In the form of L z an area A may be indicated. In the form of
L 3 or LA a volume may be indicated. Frequently L/t is a velocity v.

BOND NUMBER.

Bo units in terms of weight.

Bond Number _Bo = dimensionless]

(w/:= YE (T ft

Bond number as a force ratio.

Bo --
Force of Gravity

Surface Tension Force

w

TL

Bo units in terms of density.

w (Fr)
Bo =--=-

TL TL (Fr)

gL

(Fr)
(We)

(Fr) (Fr)

4



BUBBLE MECHANICS DOMAIN

pv z L_

= (We___!:

Tgc
[ sometimes used]

Bo measures the effect of gravity and surface tension where velocities

are insignificant.

We measures the effect of surface tension of moving fluids where velocity

effects are of importance.

Fr measures the effect of gravity on moving fluids.

In same equation Bo or [(We)/(Frl] can be used, but the use of all these

would result in redundancy.

BUBBLE MECHANICS DOMAIN. ARDA analysis gives:

C =fcn r, We, Re, Eu, Nu, Pr, D' Vb]

Derivation of general bubble mechanics domain. The work of Steele

(12, p. 15) is of interest.

ft / = C(p ibm_a (Dbft) b (Vbs-_c) c (g ft _d (gc ibmft _e-_-] sec z] lb-_ s _c z ]

(_tf lbfft_ec')f(P lbf_gf-_-] (Lft)h( q -_r]Btu_i (AT Fabs) j

L sec] cft P Ibm Fabs k hrftF ab

3600 sec_ s
hr ]

where the usual notation is supplemented by

D b and D c = bubble and container diameters respectively

v b and v L = bubble velocity referred to fluid and to container

wall respectively.



BUBBLE MECHANICS DOMAIN

ft

sec

Ibm

-i = -3a+ b+ c + d+ e - Zf - 2g+ h+ k+ m - r

= (+3f + 3g - 3 - 3n) +.b(-Zd - Zg - f - k + Z + n) + d

+ (f + g - I) - 2f - 2g+ h+k+ m + (-j + n)

0=f- 1 -n+b-d+h+m -j b= -f+ l+n+ d-h-m+j

0 = -c - Zd - Ze + f - k + s

= -c - 2d - Zf - Zg+ Z+ f - k+ n c = -2d -Zg - f - k + Z + n

0=a+e -n

=a+ f + g - i - n a = -f - g+ 1 + n

ibf 1 = -e+ f+ g e = f+ g - 1

Btu 0 = n+ r + i 1 s = n

hr 0=-r- s -i

0 = -j + n - n - i i =-j

Fabs 0 = -n - r + j i = r - n

T = c(p) -f-g+ l+n

( )f+ggc - 1(_f)f

(Db)-f+ l+n+d-h-m+J(vb )-Zd-Zg-f-k+Z+n(g)d

(p)g (b)h (q)-J (AT) j (vL)k (Dc)m (cp)n (k)j - n (3600)n

PVb z Db] \Vb /

.3600 pv b D b Cp,)nk

1

(We)

l_ . [
[(Fr) d (Re)f (Eu)g (NU)bJ (pe)n]

where (Pe) = (Re) (Pr)

=C
f / L _ h/v L_k/De _m ]
(Fr) d (Re) p (Eu) g (Nu) b (Pr)qJ

6



BUBBLE MECHANICS DOMAIN

=C
kDc/ \Vb /

(Fr) d (Re) p (Eu) g (Nu)b b (Pr) q

where m = -h

C= (Fr) a (We) b (Re) c (Eu) d (Nu)b e (Pr)f (DL-----c)g(-_)h

where exponents are new.

This is the general drag equation discussed under Drag if the heat

transfer terms and relative velocity terms are negligible, i.e.,

e
(Nu) b = (NU)b° = I

(Pr) f = (Pr) ° = i

Vb/ \Vb/

The terms and seldom appear in correiations.

Rohsenow correlation

C = (Re) a (Pr) b (Nu) c

Foster-Zuber

Nu b = 0. 0015(Re) °'6z(Pr)

Usiskin and Seigil

0. 02080 = = Bo



BUBBLE MECHANICS DOMAIN

Zuber

Cole

1 1 1

6 (Nu)b We
(Fr)

1 1 (Fr)O.44
(0. 040) z (We) °'56

ARDA derivation of simple bubble mechanics relation. The preceding

general relation contains many factors. If less factors are included a

simpler relation is obtained which may be considered to be the generai

domain equation with certain less important parameters omitted. As

a result of ARDA dimensional analysis which follows:

C = [(Fr) a (We) b (Re) c (Eu) d]

The motion of a bubble or sphere in a fluid depends on properties of the

fluid and conversion factors as follows:

F = force, ibf

L or D = diameter, ft. Use D for diameter

L

L in velocity _-

F

L z in pressure, P LZ

L 3 in volume

ft
v = velocity, --

sec

P = A I_I =
difference in density between inside and outside

ibm
fluids,

ft3

_x = _f = viscosity outside fluid,
Ibf s ec

ftz

g - gravity or acceleration field,
ft

2
sec

8



BUBBLE MECHANICS DOMAIN

gc = conversion factor, 32.2

conversion factor,
ft ibf

J = 778-
Btu

ibf
T = surface tension, f--i-

ibm ft

ibf sec z
• This is an unvarying

used in the same manner as

The relation obtained may also be valid as a general equation for interface

or interface phenomena although some extension of theory may be

required.

The general relationship may be written:

T = fcn(F, L, v, P' _' g, gc), or

T(_tf) = C(Flbf)a(hft)b(vsfetc) c (p ibm_d (ibfsec_e (g ft _fft3 J 7_ J sec z J

(ibmft) ggc ibf sec z

The individual unit-properties and exponents on each side of the equation

must be equal. For example, for Ibf:

ibfl ibfa+ e - g

Writing the equality for the exponents above, for each one of the unit-

properties such as ibf, ibm, sec and ft:

ibf 1 = a+ e - g g= a+ e - 1

ibm 0 = d + g d= -g = 1 - a - e

sec 0 = -c + e - 2f - 2g c=e-2f-2g

= e - 2f + 2 - 2a - 2e

= -e - 2f + Z - 2a

ft -i = b+ c - 3d - 2e + f+ g

-I = b - e - 2f+ 2 - 2a - 3+ 3a+ 3e - 2e + f+ a+ e - 1

0 = b+ e - f - i + 2a b = 1 + f - e - 2a

9



BUBBLE MECHANICS DOMAIN

Then,

T = C(F) a(L) 1 + f - e - 2a(v)-e - 2f + 2 - 2a(p)l - a - e(_x)e

(g)f (gc)a + e - I

[' gcIe=c LPvLj

(We) -I = C(Eu) a(Re)-e(Fr) -f

We = C (Re)a (Fr)b General Bubble

(Eu)C Mechanics Domain

where exponents have been re-designated.

This relation can also be written in the form of the general bubble mechanics

domain equation with certain terms omitted.

C = (Fr) a (We) b (Re) c (Eu) d

Simple bubble mechanics equations by association. This is designated as

the ARDAAssociative Method. It is alternate to the ARDA basic method

using applicable dimensionless numbers from the table on thefollowing page,

If T= fcn[F, L, v, P, M, g, gc]

' P' gc

= fcn
Surface \
Tens ion_

Related]
Number/

(We) = fen[ (Re)(Fr)(Eu)(Eu,

= C[ (Re) a (Fr) b (Eu) c]

F - /Velocity,\4
I/Vis cosity_/Gravity\/P r e s sur e_/Diam ere r \ I

II Related ][Related||Related //or Lengthll
Number Number Number g_ Relatedl I

Lk /_ ik /_ Numbers/J

Re, or Fr)]

10



BUBBLE MECHANICS DOMAIN

TABLE BASIC BUBBLE MECHANICS DIMENSIONLESS NUMBERS

We

Eu

C D

Re

FF

I Weber sl
Number

Dimensionles

Euler slNumber

Dim ens ionle s

(Eu)

/ Reynolds >
I Number

\Dim ensionle s s

Number

Dim ens ionle s s

/ Surface \

= [ Tension_ =
Related ]

\Number/

/Pressur 4

= _ Related ] =

\ Number /

( _ \= Related] =

Numbe r/

/Viscosity_

= _ Related J =

\Number/

/Gravity_

= [Related] =

\Number/

vo_oc_t_,_
Related] =

Number/

Diameter \

or Length} =

Related ]
Number /

( R elgaCted _ =
Numb e r/

w ere
p vZJ

for bubble

pvJ

[ vo1
-_j

where P =

We or (Eu = CD)

Any of We, Eu,

Fr

Any of We, Eu,

for drag

C D, Re,

C D, Re

iI



BUBBLE MECHANICS DOMAIN

or

(We) d = C[ (Re) a (Fr) b (Eu) c]

To utilize this procedure one must know that the preceding dimensionless

numbers are basic as determined by the basic ARDA procedure.

However, having determined this for bubble analysis, perhaps the associ-

ations involved may be of use in the analysis of new problems.

Flow region I. If (Eu) c = (Eu) ° = 1 = (CD) ° and (We) d = (We) ° = i,

the general fluid mechanics domain equation becomes:

(We) ° = C
(Re) a (Fr) b

(CD) °

Experimental evidence as embodied in Stokes Law (Ref. 10. a. 16)

indicates a = b = l and C = 9.

1 = 9[(Re)(Fr)]

= 9

for Re < Z

= 9{_Vgc_
 p-- gj=9(st}

where St (Stokes Number Dimensionless) is the name that will be

assigned to this value.

Stokes law is generally accepted and is evidently defined by the following

relations :

or

(We) ° (CD) ° = 9(Re)(Fr)

1

(Re)(Fr) = -_ 9(St) = 1

Region 1

Stokes' Law

Re<Z

The first equation may be preferable in that it is stated that Stokes law

1

St = (Re)(Fr) =-_ is valid in Region l, a region in fluid mechanics in

which (We) d = (We) ° = 1 and (CD) c : (CD) ° = 1 or that Stokes law is

1Z



BUBBLE MECHANICS DOMAIN

independent of We and Eu or C D. All the implications of this last

statement are not fully understood at the present writing, but experi-

mentally Stokes law appears to limit Region I to a region in which

Re<2.

The following experimental relation also quoted from Ref.

may also be of interest.

C D = 2(_---e)

Flow region 2. If (We) d = (We) 0 = 1 and (Fr) b

general fluid mechanics domain equation becomes:

i0 & 16

= (Fr)° = i, the

(We) ° = C
(Re) a (Fr) °

(CD) c

CD = (c)l/c (Re)a/c

Experimental evidence by Lappleand Shephard (Ref. I0 & 16) indicates

for Re = 2 to Re = 720 for instance.

The 2 factor was introduced because of a 2 in the Lapple-Shephard drag
formula.

Region 2 equation is then

(Fr) °

C D = 9.35 (Re)O.SS (We) 0
Region 2

2 < Re < 720

Flow region 3. If (Eu) c = (Eu) ° = I and (Fr) b = (Fr) ° = I,

general fluid mechanics domain equation becomes

(Re)a (Fr) °

(We) = C (Eu)0 = C

the

13



BUBBLE MECHANICS DOMAIN

Experimental evidence by Kaissling and Rosenberg (Ref. i0 & 18)
indicates

1

Re = I. 91L_fg c J = 1. 91[ (We)(Re)2] E

(Re) 0 (Fr) °

(We) = (1. 91) z (Eu) °

Region 3

720 < Re

Evidently (Re) a also = (Re) ° = i.

Flow region 4. If (Re) a = (Re) ° = I and (Eu) c = (Eu) ° = i, the

general fluid mechanics domain equation becomes:

(Re)° (Fr)b = C(Fr) b Region 4A
(We) = c (Eu)O

If b= i

We
C-

Fr
- Bo = Bond Number.

This equation was obtained by another derivation under the heading

Bond Number.

According to Fritz (Ref. I0, p 20) for Re > for liquid N z at 14. 7 psia

139 F abs

1 = i. 201__v _i°'zs[T_7

L' 3

j
= (1. ZO) 4 1

(We)(Fr)

(1.20) 4

(We) - (Fr)

(We) = (1. 20) 4 (Re)°(Fr)'l
(Eu)°

Region 4

Re > 2500

Summary of regions in flow domain. The preceding is summarized

in a table as follows:

14



BUBBLE MECHANICS DOMAIN

r

TABLE GENERAL BUBBLE MECHANICS DOMAIN

General Equation is: (we)d= C (Re)a (Fr)b = C (Re)a (Fr)b

(Eu) c (CD) c

Dimensionless Number

Principal Controlling Factor in

Dimensionless Number

Region

Solid

Sphere

Re<2

Bubble

in

Dense

Fluid

Bubble in

_Gas or

Vapor

Interface

.Phenomena

1. _ and g control v

Stokes Law

controls v

g and • negligible

(Re 2 to 720)

1 T controls v

_, g and P negligible

(Re 720 to 2500)

, T and g important

_L and P negligible

(Re > 2500)

Weber

(We)

pv z D]

kTgcJ

T

Surface

Tension

Reynolds

(Re)

pvD "

_f gc.

Froude

(Fr)

Euler (Eu) = (C D)

mu

ZT
p=--

R

Bubble

Pressure

_f

Viscosity

g

Gravity

pv j

CD= Eu

F

P=_-_

Drag

._

(We)°= 1

1

(We)°= 1

C(Re) 1 (Fr) 1

C(St)

(Stokes Law)

Re = 1

(Lapple and Shephard Equation)

(Fr) ° = 1

I

(CD) ° = I

C(CD) c

(We) = c(1)
(Kaissling

(Re) ° = I

and Rosenberg Tests)

(Fr) ° = i (Eu) ° = 1

(We) C(Fr) b

(Bond Number - Fritz Relation)

(Re) ° = 1 (Eu) ° = 1

15



BUBBLE MECHANICS DOMAIN

The empirical equations for the four regions are:

1
i. (Re)(Fr) = -_

2. (Re)(CD)I/°'68 = (9.35) 11°'68

l
3. (We) -

(i. 91) Z

4. (We)(Fr) = (1.20) 4

The preceding may be combined into the following general equation:

(9.35) 1/°6a (1. 91) z (1.20) 4 (9) (1. 91) z (1. Z0) 4 (9)(Re

Fr 20) 4 1. 91) zwe = 11.91) 2 (1.

where for

region 1 a = b = 1 c :" d = 0

region 2 a = c = 1 b = d = 0

region 3 d = 1 a = b - c - 0

region 4 b = d = i a = c = 0

This appears to indicate that a general domain equaticn should have the

form

(C CD) c (C Re) a (C Fr) b (C We) d = C

where C represents different constants rather than the more usual .form

We = C (Re) a (Fr) b (Eu) c

Similarity and model testing require that the preceding dimensionless

relationships be obtained. The table is useful in indicating test possi-

bilities in each of the four regions and procedures in correlation.

16



BUBBLE PRESSURE

BUBBLE PRESSURE. A stationary bubble immersed in its own fluid has

an internal pressure PT due to surface tension.

If the bubble is rising or otherwise moving with a velocity v it also

contains a velocity pressure Pv"

1 pv z

Pv- Z gc

The bubble can be made to rise by immersing it in a fluid in which it will

be buoyed-up by a force equal to the weight of the displaced fluid. The

buoyant pressure PB or weight per unit area on the bottom is the weight

of displaced fluid divided by the projected area.

w=m = g__V= P--
gc gc

4 3
-- _R

Pw :--=p :pA gc _7

: _ \gc/T : p --

Internal Bubble Pressure = Bouyant Outside Pressure

PT + Pv = PB

4T 1 9v z _ p {_@___ZD
-_-+2 gc \gc/-_-

This can be written

T = f(D, p, v, gc' g)

By ARDA dimensional analysis

17



BUBBLE PRESSURE

( ibf ibm bft cibmft d( ft-_-/ C(Dft)a (P f---t_] (v sec/ (gc s-77/

For:

ibf

Ibm

sec

ft

I = -d

0=b+ d

0 = -c - Zd - Ze

-i = a - 3b+ c + d+ e

=a- 3+Z- Ze- I+ e

=a-Z-e

d= -I

b= -d= 1

c = -2d - Ze = Z - 2e

a= i+ e

T = c(m) 1 + e(p)l(v)Z - 2e{gc)-l(g)

Ife=l

/

C _

D pv z

/ (We) (Weber Number)

- (Fr) - (Froude Number)
= Bo = (Bond Number)

IfD=L

= mg = Bo = (Bond Number)
C = Tg c TLg c

where Bo = Bond Number, used frequently in correlations by many authors.

Reference to the general bubble mechanics equation shows that this is the

same result obtained in region 4 in the general relation where (Re) ° = 1

and (Eu) ° = i.

The preceding would seem to indicate that the pressures in a bubble vary

due to surface tension, velocity and weight with velocity v and diameter

D and that one measure of these is (We/Fr) = Bo. It may be that the Bond

Number Bo may be a measure of bubble stability.

18



BUOYANCY

BUCKINGHAM PI THEOREM. See Pi Theorem.

BUOYANCY NUMBER. This number, which is a natural convection term

occurring in the general convection equation, does not seem to have been

given a name

Bu = I BuOyancy Number 1

\ dimensionless /

L z wBAT

_f Vv =- / ibfsec\ /

Bu = mgBAT
_tfgc Vv where w = gc

L z gBAT (L ftz) (p Ibm_ (g _)(B al-bs)(ATF abs): p : f-P-/ F

( Ibfsec_( 3 ibm ft )(v ft )(_f gc)V _f ft2 / 2. 2 ibf sec z

pvL hBAT

_f gc/ (Re)BAT

tr r)

The last equation indicates that BAT is the basic dimensionless number

rather than Bu.

It will also be shown that

Buoyancy force per unit volume. If a bubble of volume V and of weight

density (w/V)i be immersed in a surrounding fluid of weight density

(w/V)o, Archimedes' principle is that a body immersed in a fluid is

buoyed up by a force equal to the weight of the displaced fluid. The net

force is the buoyancy force less the weight force.

19



BUOYANCY

Ad 0 i

If the inside fluid now increases AT above the initial temperature and

B(ft3/ft 3F) is the coefficient-of-volume expansion, the increase in

volume per unit volume is (BAT). The additional buoyant force upward

is then

= (BZ T) w =
At o VO

There is no additional weight force downward because there was no increase

of inside weight resulting from the volume expansion. The total net

buoyancy force is then

(F ft-_-]=Ibf_ (V)Ad + (_t= (V_o)-(w)+V i <'_oo{WB£_T)

h),= i + BAT) -
i

= - for no AT and different fluids
0

V

for inside heated AT above different

outside fluid

for AT inside above same outside

fluid

In the preceding, (_)= (#)g!, thus the buoyancy force due to weight

densities is frequently called a gravity force and written in terms of mass

densities (_) = p or

Buoyancy force per unit mass.

P ibm

2O



BUOYANCY

gc Ibf secZl

= -'--_-\gc/

Buoyancy number by dimensional analysis. It is desired to develop a

Buoyancy Number to express the effect of natural con;,rection resulting

from a body of fluid of volume V using in temperature AT above the

surrounding temperature under the action of a buoyancy force

= v . By basic ARDA procedure

= IBu°yancy Number 1Bu

\ dimensionless /

= C(fl_ AT ]ft_bf)a(Lft)b( v sftec/)C(_f lbfsec_dftz ]

Ibf 0 = a + d d = -a

sec 0 = -c + d c = d = -a

ft 0 = -3a + b+ c - Zd b = 3a - c + Zd

= 3a + a - Za

= Za

{L2wB_T_a
= c\ _-TW/

where C and a can both equal i.
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CAUCHY NUMBER

Examining the buoyancy number

mu -

z
L wBAT

L _f vV

FwBAT]

_f

wBAT

zM _---I

o_ag

A(!l

(F) buoyancy AT

(F) viscous drag

As was the case with Re these forces are per unit area per unit velocity

per unit distance.

CAPILLARY TUBE. For flow through a capillary tube (Ref. 24, p. 16).

If V secft--_3 = C(D ft)a(L ft) b @f
tbf sec_ c f^p lbf_ d

ft z '] _ ft--'2-]

sec -i = c c = 1

Ibf 0 = c + d

=-l+d d= 1

ft 3 = a + b - 2c + 2d

=a+b+ Z -2 a= 3-b

_r = C.(D) 3 - b(L)b(_)-l(Ap)l

CAUCHY NUMBER. This parameter occurs in elasticity problems

involving modulus of elasticity, E. When it occurs with the shear modulus

S it is known as the Fanning number.

For solids Youngs modulus of elasticity is used for E. For compressible

fluids Murphy (Ref. 28, po 145) suggests the bubble modulus of elasticity

(see Modulus of Elasticity).

Ca Units

Ca = Cauchy Number_

dimensionless /

[ ibm_(vZ ftz L

=-- = / tbf\/ 'Ibm ft \
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CAVITATION

Murphy (Ref. 28, p. 1670) shows

Ca = (Ma)Z = Pv---Iz
Eg c

Cauchy Number as a force ratio. The Cauchy Number may be expressed

as a ratio of the force of deceleration or inertia force to a compression

force.

Ca =
(Force of Deceleration)

(Force of Compression) EA

mA
- ZAgc-- ZAgc --\S77g )

CAVITATION. Increases in fluid velocity are accompanied by reduction

in static pressure. When the velocity in a liquid has increased to a value

such that the local static pressure is reduced to the vapor pressure of the

liquid, the liquid boils to form bubbles on cavities.

Pump cavitation equation. In a pump inlet the allowable pressure reduction

P of a fluid because of velocity may be established.

Tf_
J-£. P = (P* - Pv) = '_- -_ :-"-"t_uta, 1hill pressure) - (vapor pressure)

= (Patm - Psuction).- (Pvapor)

Ap = (Pz - PI) = (pressure rise across pump)

N = pump rpm

v = wND = pump impeller tip velocity, ft per rain

(P_tb)= C(AP lb_a(N-_ec)b(P lbm_C(D ft)d( gc lbmftftz/ ft 3 / lbfsec z)

ibm 0 = c + e e = -c

sec 0 = -b - 2e

= -b + 2¢ b = 2c

ibf 1 = a - e

=a+ c a= i - C

ft -2 = -2a - 3c + d + e

= -2 + 2c - 3c + d - c

0 = -2c + d d = Zc
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COMBUSTION

AP = C(P) 1 - c (N)2C(p)c (D)ZC(gc)-C

-c

_] = C = C(Th) a
(where C and a are new numbers)

The preceding relation is given by Langhaar (Ref. 2, p. 114) where Th is

the Thomas number. An alternate form given by Pankhurst (Ref. 2.4,

p. 92) is

Pgc Pgc

pTrZNZD 2 =-7 = C(Th) a

Eu = C(Th) a

Pipe line cavitation. Murphy (Ref. Z8, p. 144) suggests use of Cnwith P

defined as the vapor pressure for pipe line cavitation analysis.

COMBUSTION DOMAIN. ARDA analysis gives

C = fcn(Pr, Sc, Fr, Eu, Hu, Da, Ec, Re, SF)

Derivation of combustion domain. It is desired to develop by ARDA

dimensional analysis a general Combustion equation (Ref. Z4, p. ii0)

to include the physical processes governed by the following physical

properties and conversion factors:

e

5.

6.

7.

8.

9.

i0.

ii.

IZ.

13.

14.

15.

16.

i. k-

Z. D m

3. g=

P=

thermal conductivity, Btu per hr ftz per F per ft

= mass diffusivity of one substance into another,
z

gravity, ft per sec

pressure, ibf per ftz

ftz/hr

q = heat value, Btu per ibm
U = reaction rate, Ibm per sec per ibm

J = 778 ft Ibf per Btu for heat conversion into mechanical energy

3600 = 3600 sec per hr for mixed units of sec and hr

Cp = specific heat at constant pressure, Btu per ibm F
D = diameter, ft

v = velocity, ft per sec

_m = viscosity expressed in mass units, ibm per ft hr

AT = temperature rise or value above given base, F

p = (w/V) = mass density, ibm per ft3

gc = conversion factor = 3Z. Z ibm ft per ibf sec z

L = length dimension, ft
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COMBUSTION

The relation between these factors is:

Btu _e 1 f

-1 = C_F} tDm hr] s-_c z]

B tu ,_ {D J )m(j ftlbf_g(3600 sec_h i ksec fthr

(ATF)n ( p lbm'p/''_] _gc lb'_s-e'_'2']"Ibm ft _q(Lft) r

Equating exponents :

hr 0 = -a - b - h - m m = -a - b - h

Ib---f 0 = d+ g - q q =+d+ g

Btu 0 =a+ e - g+ i i= -a - e+ g

sec 0 = -Zc - f + h - k - Zq

Ibm

F

ft

= -Zc - f + h - k - Zd - Zg

0 = -e - i+ m + p+ q

=-e+a+ e-g-a-b-h

+p+d+g

O=-a-i+n

=-a+a+ e- g+n

0 = -a + Zb+ c - Zd+ g+j

+k - m -3p+ q+ r

0 = -a + 2b+ c - 2d+ g+j

- 2c -2d -2g - f + h + a

+ b + h - 3b + 3d - 3h

+ d+ g+ r

O= c - f - h+ j + r

k = -2c - 2d - f - Zg + h

r=c+f+h-j

Substituting in original equation

• -a- +

1 = C(k)a(Dm)b(g)C(p)d(q)e(u)f(J)g(3600)h(Cp} e g(D)j

(v)-Zc -.Zd - f - Zg+ h(_m)-a - b - h(_T)g - e(p)b - d+ h

(gc}d+ g(L)C + f+ h - j
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COMBUSTION

Collecting and identifying terms:

i "
_m Cp

k

Pr = Prandtl

Physical Propertie

Pgc

pva

Eu = Euler

Pressure

" Z

V

Cp ATgc i

Ec = Eckert

Heat to KE

_a t"

I _m

P Dm
Y

= Sc = Schmidt

Diffusion

q

Cp AT J
ir

= Hv = Heat Value

Heat Release

pvL(3600)

_m

= Re = Reynolds

Viscosity

e

hl

|

Lg
2

V

Fr = Froude

Gravity

V

J

Da = Daml[ohler

Chemical Reaction Ratio

L

D

T

= SF

= Shape Factor

C = (Pr)-a(sc)-b(Fr)C(Eu)d(Hv)e(ma)f(Ec)-g(Re)h(sF) -j

Combustion regions. If certain phenomena are not present then the terms

representing the phenomena are absent. For example, if there is diffusion

present, the Schmi_dt number is absent or

-b o
(Sc) = (Sc) = 1

Combined terms. For specific cases the terms are combined to give other

less basic numbers. For example the Damkohler II parameter equals

[(Da)(Re)(Sc)]. The Lewis number equals (Pr)/(Sc), etc.

Combustion domain by associative method. Knowing the physical properties

that are to be included the appropriate dimensionless numbers including

these properties are included to permit the immediate writing of the

equations as shown by the tabulation.
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CONVECTION

l

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

Property

k

Dm

g

P

q

J

3600

Cp

D

C o r re sponding

Dimensionless Number

Prandtl

Schmidt

Froude

Euler

Heat Value

Damkohler

Eckert

Included in other numbers

v

_m Reynolds

_T

P

gc

L

Included in other numbers

Included in other numbers

Included in other numbers

(Included in Eckert}

(Included in other numbers}

(Included in other numbers)

Shape Factor

CONSTANT. A pure constant is a dimensionless number, such is the 778

in the dimensional constant or conversion factor J = 778 ft lb
Btu

CONVECTION HEAT TRANSFER. ARDA analysis gives

L

Nu = fcn (Re, Pr, Bu, _)

Derivation of convection heat transfer domain. The general convection

domain equation is established by basic ARDA dimensional analysis• The

convection conductance h c depends on properties of the fluid and conversion

factors as follows:
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CONVECTION

i. p - (m/Vl - mass density, Ibm/ft 3

2. Cp = specific heat per unit mass, Btu/ibmF

3. wBAT/V = buoyant force per unit volume, ibf/ft S. Determination of

this buoyant force is based on the principle that a volume immersed

in a fluid is buoyed up by a force equal to the weight of the displaced

fluid. The volume increase per unit volume of a part of the fluid,

resulting from a temperature rise AT °F is B(AT) where B is the

coefficient of thermal volume expansion, ftS/ftS F = I/F. If the weight

density (w/Vl is multiplied by B(AT), the weight of the fluid displaced

by this increase in volume is obtained, which is the buoyant force per

unit volume.

4. Z = size factor, length in ft

5. D = tube diameter, ft

6. v = fluid velocity produced by forced flow rather than buoyance, ft/sec

7. _f = viscosity in force units, ibf sec/ft 2

8. k - thermal conductivity, Btu/hr ft F

9. gc = mass acceleration constant = 32. Z Ibmft/Ibf sec 2. Introduced

because flow may be expected in which Ibm masses may be expected

to be accelerated by Ibf forces which will then require the gc relation

between Ibm an d ibf in the F = ma/g c law. That is to say, because

the F = ma/g c law is involved in the flow phenomena, it is introduced

by use of the gc conversion factor.

i0. (3600 sec/hr) = time conversion factor, introduced because some

properties are based on seconds, others on hours.

General convection equation. The relationship between h c and these factors

may be written using usual units, if C is a dimensionless numerical

constant and a, b, c, etc. are exponents, as

(h c _] C(V _](cpBtU _= lbm_a lbmBtU- _b/wBATlbf_CF]_ _ ] (L ft) d(D eft)

(v ] lbfsec

3600 sec_ jhr /
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CONV ECTION

a b c( )dNu = C(Re) (Pr) (Bu)

General

Convection Equation

Domain

Region 1 with high velocity° For the convection domain three general

heat transfer regions may be recognized. Region 1 may be designated

as one with high velocity. This high velocity occurs with forced flow

and would be turbulent flow with buoyancy effects negligible. For

effects to be negligible _wSz_T_ c in the basic equation mustbuoyancy

= 1or/wB_T_c
\ v /

equation (Bu) c = (Bu) ° = i to yield the usual turbulent flow Nusselt

relations.

Nu = C Re) (Pr)

_or1on__est_eeecto(_I_
d=0.

(})_(_)ois negligible or = =lor

Nu = C[ (ae)a(pr} b]

This is the usual convection equation for turbulent flow (Ref. 20)

(Ref. Zl, p. 618).

Region Z with low velocity. This occurs with forced flow. If the

velocity is low enough for laminar flow, then viscosity effects as well

as buoyancy effects must be negligible. In the basic heat transfer domain

_fg oequation: for viscosity effects to be negligible = _f = l or g = 0; for

( )( )buoyancy effects to be negligible wBAT c wBAT o= =lorc=0 In
V V "

the derivation of the general convection domain equation g = b - a - c.

Thus, 0 = b - a - 0 and b = a. The general convection domain equation

with b =a and (Bu} c = (Bu) ° = 1 becomes

(Nu) = C[ (Re)(Pr)]a(b) d

[ _l_l"__+= C' 4(Re)(Pr)_j _5]

a

3O



CONVECTION

The individual unit properties and exponents on each side of the equation

must be equal. For example, for ibm

a-b+i
ibm ° = ibm

Writing the equality for the exponents for each one of the unit properties

such as ibm, ibf, etc. in turn

ibm

ibf

F

Btu

hr

sec

ft

O:a-b+i

0 = c+ g - i= c + g - b+ a

-I = -b -h

I =b+ h

-i = -h - j
-i = -i+ b - j

0 = -f+ g - Zi+ j

= -f + b - a - c - 2b+ 2a+ b

-2 = -3a - 3c + d ÷ e + f - Zg - h + i

=-3a-3c + d + e + a - c - Zb + Za+ Zc -

= -a - 2c + d+ e - 1

i -- b - a

g=b-a-c

h=l-b

j=b

f=a -c

l+b+b-a

e=a- l+ 2c-d

Substituting these values of i, g, h, j, f and e in the original equation

b wBAt c d a- i+2c- -c b- a-c

(k)Ib( c)ba(3600)b
Rearranging:

b c d

Checking units in each of the groups in the preceding equation shows the

important fact that each group is dimensionless in that the units of the

numerator cancel the units of the denominator. Such groups occur

frequently in heat transfer and fluid flow and are called dimensionless

numbers. Most of these dimensionless numbers have been given names

except the fourth which will be defined as the buoyancy number Bu. Thus

the previous equation may be written:
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CONVECTION

tubes, = = i.

laminar flow relation.

term is negligible, as for example with long

The preceding equation becomes the usual

Nu = C I

=C'

=C'

o a7 (Re)(Pr

= C' Fn kLJ where 3600v = h--_

: c' [ Gz] a

This is a well known convection equation for laminar flow (Kef. 20,

Ref. 21, p. 621) where r_ = mass flow rate, ibm/hr and Gz = Graetz

number, dimensionless (Ref. 22, p. 228).

Re_ion 3 natural convection. If natural convection is assumed as not

applicable to tubes of diameter D having a forced velocity v, then the

terms involving D and v in the initial derivation of the general convection

equation must have negligible effect or D e = 1 = D ° so that e = 0 and

v f = 1 = fo so that f = 0. Experiment seems to show that b = a.

Substituting these values of e, f and b in equations for the exponents

in the derivation of the general convection equation

f= a - c e = a - 1 + 2c- d

O--a - c 0 = a - i + 2a - d

c=a d=3a-I

Substituting these values of b, c and d in the general convection equation

domain:
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CONVECTION

a

a a 3a- I

a

_-/_en_//_°_c_](_r)t\viL-7_os_j/\viscosity/ ]

a

where L 3 = V

_fz gc 2 V (Pr

a

= C z (Pr

L _f gc V

z a

I3z 1=C

a

where wg c =mg

C[ (Gr)(Pr)] a (Ref.

(Ref.

20, p. 171_(Ref. 21,

22, p. 373)

pt 624),

Z a

c 3600 fgc]= C 2 " k

L }xf gc

(3600) gBATcp] a

= C(Ra) a
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CONVECTION

where:

dimensionless numbers are in terms of L rather than D

Gr = Grashof number, dimensionless (g2, p. Z28)

Ra = Rayleigh number, dimensionless

= (Gr)(Pr) = (Re)(Bu)(Pr) (22, p. 373)

The equation Nu = C[ (Gr)(Pr)] a is the usual natural convection equation,

The form Nu = C(Ra) a is less well known (Z2).

Summary. Results in the three regions may be summarized in the table.

Convection heat transfer by associative method. This is alternate to the

ARDA basic method, using applicable dimensionless numbers from

Table 2.

If h = fcn

= fcn

ICConvection \

onductanc e_

Related ]
Number f

]
v, p, _, k, Cp, wBAT secjV , L, gc' 3600-_-- r

o. o .
.'\ v I\Ul _ _'.- _j

rlV_Selfteity_l TrHeasSer _ / Heat _I Shape _/Numbers_1
Properties IBu°yancyllFact°r WIncludlngll

L_Number I_ Number I \Numberl_Numberl_ v' S%0oC ]J

Nu= fcn[ (Re) (Pr) (Bu) (_) (Re)]

The limitations of either method in general use are not at present

determined. It appears that use of both methods will be of value in the

solution of particular problems.

CONVERSION. Conversion from given units to other units is accomplished

by the use of conversion relationships.

Conversion equation. A conversion equation is fundamental. It is arbi-

trarily adopted and requires no proof. I ft = Ig in.

The constant Ig may be considered to be a proportionality factor. It

is a number and is completely dimensionless.
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CONVECTION

Region

a_.d

Type of

Convection

I,

Forced

Turbulent

Re Above

ZI00

Properties

-.4 ,_

E OD
O O

Z

i ul

Pe = Peclet Number

_u

Forced

Laminar

Re Below

Zl00

(Bu)

Gz = Graetz Number

Be

Natural

Convection

_p
_f

_.f ]

Gr = Grashof Number

Ra = Raleigh Number

St = Staunton Number

D

V

General Convection Domain Equation

Nu= [Nusseltl = (_._D)\Number]

= C(Re) a (Pr) b

[Reynolds_ a [Prandtl_ b

= C \Number ] \Number]

c\7_ t k

(Bu)C !P_!'_I
(Buoyancy_C (Sh d

\ Number ] \Factor/

txf vV

= C(Re) a (Pr) b

= C(Re) a (Pr) b = C(Pe) a

,I= C (vp if (Pr) b = C

y b

,ou,o
ifb=a

= C _ (Re)(Pr)

= C(Gz) a if = = i

= c (_)

mass {specific heat _]
= c hr \conductivity ft/J

a

= C[ (Re) (Pr)

C[ (Gr) (Pr)] a

C[ (Gr)]a if (Pr) = C

F(" density .I(buoyancy l]
C L\viscosity/\'viscosity/J

C[ Ra] a

3a- 1

a

Alternate Form

Nu= fcn(St, Bu, L)

L
St = fcn(Bu_)
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CONVECTION

TABLE Z. SOME BASIC DIMENSIONLESS NUMBERS

Case
No.

Process Law

or

Proof

Association of Dimensions in a

Dimensionless Number

Dimensionless Symbol Name

Number

7

8

Mass Under

Acceleration

Mass Flow

Influenced by

Viscosity

Surface Heat Flow

----v 7 .... • .....

on Hot Mass in

Gravity Field

Length to Diameter

Ratio Shape Factor

Equivalent

Diameter

Transient Heat

Conduction

Heat Transfer

Physical

Properties

F =--

gc

Oime sion 1IOv0 Analysis _ L_f gcJ

(÷)
Analysis

Convection [ _fvV

Analysis

__4AF°r=CircleD (____)4A

P

Dim en sional

Analysis

Dimensional

Analysis

kt]
(c_I+6_l__c)

Ne

Re

Nu

BH

L

D

Fo

Pr

Newton Law in

Dimensionless

Form

Reynolds

Nusselt

Natural

Convection

Numb e r

Shape Factor

Equivalent

Diameter

Fourier

Prandtl
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GONVERSION

A conversion equation contains no unknowns. It is universally valid.
The terms have both numerical and units values. The numerical
values on both sides are different. The units values on both sides
are different.

The previous conversion equation may also be written as a conversion
factor in the form

12 in. in.i=-- =iZ--
ft ft

Conversion factors. Conversion from given units to other units is

best done by the use of conversion equations expressed as conversion

factors. Some selected conversion equations adopted by the Uo S.

Bureau of Standards with corresponding conversion factors to slide rule

;±ccurac _/ _$rc:

I in. = 0. 0254 m

( m)i = 0.0254 7--
1no

1 Ibf = 4. 4482216152605 Newton

(1 = 4.45_-_

1 kgf = 9. 80665 Newton

1- 9.81 _gf

1 lbm -- 0. 45359237 kgm

1 - (0. 454 kgm_lbm]

1 ft = 0. 3048 m

1 ; 0. 3048 m
ft

(Ref. 33, p. 9)

[conversion factor]

(Ref. 33, p. 9)

[conversion factor]

(Ref. 33, p. 9)

[conversion factor]

(Ref. 33, p. 9)

[ conversion factor]

(Ref. 33, p. 8)

[conversion factor]
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CONVERSION

A conversion factor is so called because it is a multiplying term used
to convert from given units to other units.

Conversion example. As an example of conversion, it is required to

convert 1.00 psi to N per sq m. Conversion factors are used as

required so that the units cancel to give the desired answer.

P = i. 00 psi

p --

N
= 6895 z

m

The conversion equation for pressure is thus

lh N

The corresponding conversion factor is thus

895 -_ = 895 "'"psi

\ 1

Conversion factors gc. Most conversion equations and conversion

factors as previously given are between the units of the same kind

of property or dimension. Thus

12 in. = 1 ft

Another type of conversion factor occurs in conversion between different

kinds of properties. These conversion factors may have definite symbols

such as gc which is essentially a conversion factor with numerical and

units part for converting Ibf to ibm.
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CONVERSION

gc-- (3Z.Z ibm ft )
=i

ibf sec z

This conversion factor was obtained dimensionally from the F = I m----]a
\_C/

equation. Its numerical value was established so as to have 1 Ibm weigh

I ibf under standard gravity acceleration g = 3Z. Z ft/sec z.

The gc factor operates like any other conversion factor. For example

to express _f viscosity in _m mass units.

Ibf sec
_f = i00

ftz

Ibfsec_(3Z. Z Ibm_ft_ (3600 sec __m = (1. O0 }t2" "] lbf secZ/ hr ]

Ibm
= 116,000

fthr

The gc conversion factor must not be confused with the mathematical

expression of a physical law such as

where the terms F, m, a represent terms having numericalvalue and

units, the numerical part varying with the problem.

In many systems gc has been assigned a numerical value of one.

Important gc conversion factors are

ibm ft1 = gc - 3Z. 1740 Ibfsec z} (Ref. 3Z, p. xvi)

i = gc = (I slugmassft)Ibfsec z

( Ibmft )1 = gc - 1 poundal force sec z

1 = gc = (980"665 gram@rammass cm)force sec _ (Ref. 3Z, p. xvi)
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CONV ERSION

1 = gc = (980.665 kgmass cm)kgforce sec _'

( kgmassm )I = gc = i Newtonforcesec z (Ref. 33, p. 3)

gram ma_..s cm_1 = gc - 1 dyne force sec z]

Conversion factors J. Another group of conversion factorsat:_lies,

reIating energy as work to energy as heat.

ft Ibf
l = J = 778-

Btu

Newton meter_1=J: I j-ou_ /

joule
1 = J = i. 3558179 _t I_,_

(Ref. 33, p. 3)

(Ref. 33, p. 14)

usually

Energy conversion.

joulel1 = 1.05504 Btu I

 oule i = 4. 1868 cal

i=(I j°ule )watt s ec

1 = 1 amp volt s ec

(Ref. 33, p. 7)

(Ref. 33, p. 7)

Conversion factors, general. Important unity conversion factors are

given for reference. These permit easy conversion from given units to

other units as may be desired. Lbm denotes Ib mass, ibf denotes ibforce.
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CONVERSION

Length

Conversion:

Weight
C onve r s ion:

Time

Conv e r sion:

_(_0_) _:(_) _(_ooo_S--_n_:(_n')
1=(3.Z81meterft)1=(Z54ci__.),l=(i0m____mm)=(1010A__)
l --"

103 meter _km /
( mm/ ( 01° angstr°_m. /1 = i0 cm I 1 = 1 meter /

._
loz cm )meter 103 mm )meter

I : (106 m--icr°nlmeter/-

106 micr°n 1

meter ] = (

(3. Z8 m:tter)(iZ_ ) 2..5,

4OO
micron)in.

1 \980 dynes 1 = i000 kg

( _ec/ ( _e_1 = 60 min/ 1 = 3600 hr /

( min I (hr)1 = 60 hr ] 1 = Z4_-_ay

T emperatur e

Area

Conve r sion:

Volume

Conversion:

T°R = T°F abs = t°C + 460

1 = (1 in'Z_44 qVJ

( in'3]l= Z31 gal / quart )i = 4 gal

T°K = T°C + 273

I=(3Z oz )q_-art

( liter'/1 = 1. 057 quart/

(ca)i = I000
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CONVERSION

Velocity
Conversion:

Enersy

Conversion:

Mass

Conversion:

Force

C onver sion:

Pressure

Conversion:

1 -" (mile_)
C--f'f-rI

I, 151 knot

186, 330 mil----!e)
sec

i = vel of light

l=J= 778_ =

( _i_1 = 33, 000 rain hp]

1 = Z545 hp hr

1
o7.6kgfm_

Btu ]

1 = (746 watts

\ hp

(__._x _o_/
"of l_"Egh_ /

(  ou,e)(1 = 3413 kw_r = 3,600, O00-k-_r = 3 60 x I0t3 dyne c__m• kw hr ]

( O   nocm)( e w tt)(: = 1 = 1 = 4. 184--]3oule joule1=(1o7e_Le_=
joule]

1 = sz_ = lO6O--g}--j-u]

slug mass'

1 = 3Zo Z lbf

(9 ) ( ) (4 Newton_
dyne force Z. Z5 ibf = .45

1 = 81 g--_am_ = 1,000, 000 dyne force _ ]

(atm refers to standard atmospheric pressure at sea level)

( ,s_l ( _tw_ter11 = 14.7 a--_m ] 1 = 34.0 _ l

• (I, 013, 250 dyn-----!e)1 = (Z9"9 in"H$)atm 1 = (760mmHg)atm I = a_-mm cmZ

41



DAMKOHLFR NUMBER

wDz
Circle: Area = _R z =--_

Perimeter = ZwR = _D

Sphere: Surface = 4wR z = wD z

4 1

Volume = -5 _R 3 = -_ _D 3

C ylind e r: Surface = _DL + 2 _R z

Volume = _RZL

Metric conversion. See metric system.

DAMKOHLER NUMBERS. A quantity involving chemical reaction rate.

Basic Damkohler Number. It is assumed that U is a driving potential per

unit velocity per unit distance for chemical reaction in the same manner

that viscosity, _f, is a driving force (equal to drag force} per unit velocity

per unit distance for flow.

Thus, for driving potential

Fluid Flow Chemical Reaction

)Ilbf force U \s--_cf_f\ft a area

ft velocity
s__ec_ 1

ft distance !

ibm

v ft velocity_

sec

1_ LU
The chemical driving force is therefore - which inspection shows

to be dimensionless. This is the Damkohler parameter 1 which we will call

the Damkohler parameter.

Dal - Da = (Damkohler Number /

\ dimensionless /

ibm s ec!
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DAMKOHLER NUMBER

Damkohler Number. There are five dimensionless groups (6). The first

Dal expresses a bas'ic chemical driving potential and will be termed the

Damkohler number. The other groups are redundant in that they are

expressible in terms of more basic groups.

(%!) f'°ibmse_Dal = Da = = ft /
V_ !

see

DaZ = (Da)(Re)(Sc)

(.__) (Lvp/( _m
Lft z _ Ibm .)D ftz

see

Da3 = (Da)(Hv)

/T A.\ I \ _.,A-

vcpT

(qBto_)(L,t)(D_)1
( ,t)IcB_v_ ,:--- V.1 (TF)

sec ", P ,omr t

Da4 = (Re)(Pr)(Da3)(3600) = (Re)(Pr)(Da)(Hv)(3600)

_
p --_-] ft z l_I ibm Btu sec_ibm sec q _ 3600 hr ]

: )hr ft 2 F abs F abs

Da5 = Re
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DIFFUSIVITY

DIFFUSIVITY. The three principal diffusivities are listed below. All

have the reduced units (ftZ/hr), but in this form the physical nature of

the property is not indicated. Equivalent or unreduced units are

required to indicate the physical nature of the quantity. Thermal

diffusivity and viscosity are separately discussed elsewhere. Mass

diffusivity is discussed in a following section.

DIFFUSIVITY

Thermal Diffusivity

ft z
a_

hr

Btu ft

pc--_jl = (p__]lbm_ (Cp lbmBtUF)

Momentum Diffusivity

(Kinematic Viscosity)

fAhr

/ ibm

i
| ibm

\P_ j

=(._fgc 36oo)
P

ibf sec

f ft z '

32. 2 ibm ft

3600 sec_hr ]

Mass Diffusivity

(Molecular Diffusivity)

D m

D _ftz

( lbmdiffusi°n)hrft z

-[____ibmdensity) ]

{ft thickness) !

Ibm \

Dm (ft---_ft)Ibm

Ibm ft3 ft

= Dm hr ftz Ibm
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DIFFUSIVITY

Mass diffusivity. Mass diffusivity D is a property similar to thermal

Conductivity k and viscosity_tf as shown in the table of basic definitions

or as used in a flux equation in the second tabulation.

SIMILAR PROPERTIES k, Mf, D

k

The rmal Conductivity

k

gf

(Ahsolute) Viscosity

Btu rate)_r heat

(ft z area) ]ft thickness

L j

{Btu_

= k \_/

Btu ft
=k

hr ftz F

Btu
=k

hr ft F

_f

Ibf force 1
ft-r ¥_e_ I

/ft veIocity\
[see |
/_Y Fh_
\ /

ibf ft s ec

= _f ftz ft

ibf sec

= _f ftz

_m = gf gc (3600) --
Ibm ft

ft z hr

D m

(Mass) Diffusivit_

ion/
area /

Dm / lhm \

I -_ density_

ft thickness ]

= D m

ibm

\h-T_ /
{Ibm

Ut 3 ft]

Ibm ft3 ft

=Dm hr ftz Ibm

ft z

= Dm_r

Ibm ftz

P Dm= ft3 hr
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DIFFUSIVITY

DEFINING FLUX EQUATION (REF. 31, p. 6-6)

Property
k

Fourier Law

Heat Flux

• Btu
q -fT-r
A ftz

or \A]ftz hr

hr ftzF/\d--L-7i!

h7 _

k dT

= - pca

Property

_f

Newton Law

ma Fg c

A A

Momentum Flux

A ftz

(m-v_ Ibm ft
or \ A/hr ftz hr

mA_Xllbmor !ft hr z

/dv ftN

,
_m ft hr]\dL ft j

'dv _ ibm

= -_mq,TE}ft--_h_

= -gf gc 36001'--,jdv_
_dL/

ibm

fthr z

Property

D

Fick Law

Mass Flux

• Ibm
m J

hr

A ftz

or \A]ftz hr

hr]\ dE ft

=- pD /\d_--_-)
ibm

ftz hr

ibm"r = reaction
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DIMENSIONAL ANALYSIS

DIMENSIONAL ANALYSIS. Dimensional analysis is an important tool

in the formulation of complex physical laws. Dimensional analysis

consists of:

I. Deciding the dimensions present in a given process

2. Establishing the relationships between these dimensions

when expressing a physical law in mathematical terms.

General. To consider certain simple processes, the laws expressing

them when written as mathematical unit-consistent or unit-homogeneous

equations indicate association of dimension in certain ways.

It has been customary in dimensional analysis to use letter symbols to

represent generalized total dimensions such as L for length, F for

force, etc. While this eliminates the immediate necessity for adoption

of a unit-dimension system, as far as the dimensional analysis is

concerned, any actual calculations must be made in a system. Actually

it is simpler to adopt such a system from the beginning and thus

eliminate use of the intermediate generalized dimension system.

For example, consider that L represents L ft where the L used with

ft represents a number and L used alone represents both a number

and a unit dimension of feet. In this book the so-called engineering

system of units is used.

Thus ARDA dimensional analysis is an extension of usual procedures

to use engineering dimensional units rather than general properties

to simplify and to promote better understanding and correlation.

This arrangement of relationships in dimensional analysis puts more

emphasis on the nature of properties and less on the mathematical

equivalent of a property. That is ibf is a force and is so used whereas

ibf defined as MEt -z is rather mathematical than physical, particularly

if no acceleration force is involved in the process.

The ARDA principle of Arrangement of Relations in Dimensional

Analysis is based on the premise that every equation must be dimen-

sionally consistent. The units and exponents on the left-hand side

must equal the units and exponents on the right-hand side of the

equations. This principle is applicable to the equation as a whole and

is also applicable to each one of the unit-properties.

Considerable attention must be paid to the nature of basic dimensions,

definitions and quantities. These are discussed in detail under their

individual alphabetical headings.

The general procedures of dimensional analysis are best illustrated

by specific examples such as the drag domain, etc. given elsewhere.
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DIM ENSIONA L ANA LYSIS

Dimensions to powers. It may be shown (28, p. 21) that any measurab'le

phenomenon may be evaluated in terms of the causative factors or

properties in the form of an equation involving the properties to exponents

or powers.

Thus, if A = f(BCD .... )

then A = c(BbcCD d .... )

where first C is a constant and A, B, C, etc. are properties such as p, k,

_x, etc. and a, b, c, etc. are exponents.

For example, for a freely falling body

if L = f(w, t, g)

then L ft = C(w lbf)a(t sec) b secZ/

lbf 0 = a a=0

ft i =c c=l

t 0=b-2c

=b - 2 b=2

Thus L = C(w) ° (t) z (g)l

L = Cgt z

Dimensionless number equation. (1) Any dimensionally consistent

equation (having units on left-hand side equal to units on right-hand

side, perhaps after cancellation) can form a dimensionless number.

A m = C B n

forms

(2) Also if

which is dimensionless.

A = CBnCPDqE r ....

this may be rearranged into the form

N= C(NI a N2bN3 c....)

where N represents some dimensionless number combination to some

power of A mBnC p such as (Bn/A m) etc. This is true because the final

equation, composed of individual dimensionless numbers, must be

dimensionless or unit-consistent as a whole.
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DIMENSIONAL ANALYSIS

Physical equations involving powers. Certain other principles, useful

in dimensional analysis, are applicable to the type of equation.

A = f(B, C, D .... )

= C(B n C p D q .... )

N = C(NI aNz bN3 c .... )

= f(N I Nz N3 .... )

(i) If any term B, C, etc. has the same dimensions, their ratio

may be written directly as a dimensionless number N I = (B/C).

(2) Any dimensionless number term NI a, etc. where a is unknown

may be replaced byany plus or minus power of the N I term.

Example NI a may be replaced by NI -d.

N d = C(NI aNz bN3 c .... )

1 = C(N a NI b Nz c .... )

1 = C(NI c Nz b aN3 .... )

This is because the exponents a, b, c are unknown and any symbol may

be used to represent them.

(3) Any dimensionless number may be multiplied by any numerical

constant because the C term preceding the expression represents any

unknown numerical constant.

Example

N = C(NI aNz bN_ c .... )

= C(CNI a)(CNz b)(CN3 c) .....

where C represents any unknown numerical value (each value is

different).

(4) Two or more dimensionless numbers may be combined to

form a new dimensionless number.

Example

(NI N2) = N s •
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DIMENSIONAL ANALYSIS

DIMENSIONAL ANALYSIS ARDA. The fundamental theorems governing

the Arrangement of Relationships in Dimensional Analysis can be formu-

lated as follows. As such they are appreciably more informative than the

Pi theorem commonly used in dimensional analysis.

ARDA theorem I. Every equation should be unit-consistent in that the

units on the left hand side should equal the units on the right hand side.

Example: (w Ibm] (p Ibm] (v s_c)(A ftz)s-_c '/ = ft3 ]

Example: F lbf :
gm Ibmlbmft,(  

The second equation indicates that where constants such as gc are

involved they have both a numerical and a units part.

ARDA theorem II. In the presentation of a physical law

if X = fcn (ABCD .... MNPQ .... )

then X = CAaBbcCDd MmNnppQ q
o • • •

Mathematical proofs of this appear somewhat formidable (Z8, p. 21)

and will not be given here.

ARDA theorem III. This is an extension of the Pi theorem in a more

useful form.

If X = CAaBbcCD d .... MmNnppQ q .... represents a valid physical

relationship, then dimensional number products can be found.

M-'-'Q <'_l \MNQ] \NP ]

in which the properties A, B, C, D each appear in only one of the

dimensionless parameters such as (AM/PQ) combined in various

manners with other terms such as MNPQ appearing in dimensionless

parameter more than once. The exponents mnpq of properties that

appear more than once in dimensionless parameters will not appear

in the final equation.

It should be noted that if the original expression does not contain the

proper terms, sufficient terms, or contains too many terms, the relation-

ship is not valid and it will not be possible to form the second equation.

A proper estimate of the properties involved in the original expression

is vital.
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DIMENSIONAL ANALYSIS

Example for the drag domain

if (F) = C(T)a(g)b(Ftf)C(L)d(v)e(D)f(gc)g(p)h

then application of theorem Ill with regard to units wilt yield by ARDA

procedure

l_gc_:_C_v_o_7v,/_(_v_c(,__d

,_,>',,e>c(_)__EU_ _ =C_We_ _ _

ARDA theorem IV. Each basic dimensionless number defines the

effect of a physical property.

Example for the drag domain

if (F) = C(T)a(g)b(_tf)C(L)d(v)e(D)f(gc)g(p) h

then \pAvZ/ = \_) \_gg/ \_---_c/ C(L)d

(Eu) = C(We)-a(Fr)-b(Re)-c(Z) d

Comparing the final equation with the original equation evidently

Eu involves the effect of force F

We involves the effect of gravity g

ire involves the effect of viscosity _f

(Z) involves the effect of length Z

Thus, each basic dimensionless number appears to be related to a

specific physical property or dimension.

This is not complete, in that the remaining physical properties such

as v D gc p are involved in two or more dimensionless numbers;

but if they are so involved, it may be assumed that their effect is

included in the final formulation.
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DIMENSIONAL ANALYSIS

Other ARDA principles. Consider that all dimensions may be present

if they are involved in the physical process.

In particular, for flow of any kind, if Ibf and ibm are present because of the

operation of the F = (M/gc)a law it is necessary to introduce gc as one of

the dimensional analysis terms. If there is no mass accelerated in the

process the gc term is not needed.

If work energy is convertible into heat energy the J = 778 (ft Ibf/Btu) is

introduced. If this energy conversion is not present, this J term is

not needed.

If two units of the same property are involved, a conversion factor such

as 3600 (sec/hr) may be needed. This conversion factor is needed when

some terms such as k (Btuft/hr ft2 F) are in hour units and other terms

such as v(ft/sec) are in second units.

Redundant dimensionless numbers. Dimensionless numbers obtained in

the preceding manner are termed basic. An equation containing a basic

dimensionless number more than once such as the following is redundant

in that it can be reduced to a simpler form in which each basic dimension-

less number enters only once.

Example: Nu = C(Re)a(Gr)b(pr) -c

appears to be redundant because Ra = (Re)(Nc)(Pr) to give

Nu = C(Re)a(Re)b(Nc)b(pr)b(pr)-C

which could be better expressed in the form

Nu = C(Re) a + b(Nc)b(pr) b - c

Redesignation of exponents.

the numerical value of C, a, b, c etc.

values to be empirically determined.

they can be redesignated.

Example: X = C(A) a+ b(B)b(c)b
c

Dimensional analysis does not usually reveal

As such, these symbols represent

They can be positive or negative and

can be rewritten to the general form

X = C(A)a(B)b(c) c ....

or

1 = C(A)a(B)b(c)C(x) d ....
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DIMENSIONAL RELATIONSHIPS

which can be represented

C = fcn(A, B, C, X...)

DIMENSIONAL RELATIONSHIPS. Properties or dimensions may be

related to each other by equations expressing physical laws. One of

the most important of these is the Newton Law.

F = Cma

ma
F =--

gc

l
where c is a dimensional constant =-- as defined elsewhere.

gc

In a process in which a force F gives an acceleration a to a mass m

it is clearly possible to use this mathematical relation to express

force in terms of mass and acceleration, and certain amounts of one

correspond to certain amounts of others, but whenever force itself is

matter). Viewed in another way, in a process in which mass and

acceleration are not present, force is always a force and not a mass,

or acceleration and mass and force should not enter the problem in

any way.

A similar argument holds for the mechanical equivalent of heat J.

H = CFL

I
i

where C is a dimensional constant = -- = ft Ib .
J 778

Btu

In a process in which force F acts through a length or distance L a

heat H may be produced. (Under very definite limitations H may be

converted into F times L). Thus it is possible to express heat in

terms of force and length, but when heat itself is specifically

considered it is energy and not a force and distance. Viewed in the

second aspect, in a process in which force is not present, heat is

heat and force should not enter into the problem.
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DIMENSIONAL SYSTEM,S

DIMENSIONAL CONSTANT. A dimensional constant has both numerical

value and dimensional units. J = 778 ft Ib/Btu is a dimensional constant.

A dimensionless constant is a numerical value such as 778 in the

preceding dimensional constant.

Most equations have dimensional constants although the units are not

always clearly defined. In the equation F = Kma, K is a dimensional

constant having units such as to make the equation dimensionally consis-

tent (units on left-hand side of equation equal to units on the right-hand

side of the equation).

DIMENSIONAL SYSTEMS. Also see Systems of Units. The ad_ption

of various fundamental dimensional systems has severely limited

scope of dimensional analysis to a series of somewhat individual

solutions to special problems with inherent confusion and limitation

in comparing the findings of one investigator on one physical problem

with those of a different investigator on a different physical problem.

A more general approach is desirable. Let the principle be adopted

that there is no arbitrarily fixed number of basic dimensions. Basic

dimensions are properties that are entirely different from each other

in their physical natures. Thus force, mass, and heat are different

dimensions and should not be defined in terms of each other in a basic

method of dimensional analysis.

This is in accord with newer thermodynamics texts (6, 7) using what

might be termed an FMLT system of engineering units in which force

ibf is a dimensional property distinct from mass ibm.

A corollary is that a dimension is a basic property different from any

other dimension and, therefore, not physically a combination of other

dimensions, although in any particular process in which the die-hen -

sions are all present they may be related by a mathematical forumula.

Thus, if force, mass, time, and length are all present in a given

process, it is proper to conclude that the physical law expressing their

interaction is also present. Thus, if a force producing acceleration of

a mass is present (Newton's Law) it is proper to include the conversion

factor gc = 32.2 ibm ft/ibf sec z.

54



DIMENSIONLESS NUMBERS

DIMENSIONLESS NUMBERS. These numbers, resulting from dimen-

sional analysis, are dimensionless in the sense that the units of the

numerator are the same as or cancel with the units of the denominator.

The important dimensionless numbers will be tabulated here. Many of

them are discussed in detail under their alphabetical headings. Exami-

nation of the derivation of the various domain equations indicates that

many of the dimensionless numbers are associated with the presence

of a given physical property. These properties are also included in the

following list.

Dimensionless Number Associated Property

qb Angles, relatedAngle ratio = _-

.o

J \ _i vv l-T#TT_Tj

Ca = Cauchy - \'_gc]

Bubble s

Buoyant force = (wB&T.. 1
\ v t

Elasticity modulus = E

C D = Drag Coefficient = 2Eu

  -O mko ,er
\vl

Chemical reaction rate =

Da2 = Damkohler 2 = (Da)(Re)(Sc) Combustion
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DIMENSIONLESS NUMBERS

(2)V

Ec : Eckert = CpATgc J

Eml = Electromagnetic 1 = (_pEV z)

Ern2 = Electromagnetic 2 = (J--m--E-E_
_p Hv]

(_pHZ gc]
Era3 = Electromagnetic 3 = \ p_ }

I<E to heat = J

Magnetic permittivity = c

E

Electromagnetic field --

Fluid flow, gravity see gravity

Fgc )Eu = Euler = \pLZvZ \ /

Fluid flow, viscous see viscosity

Force = F

Pressure : P

Fdl = Fluid Dynamics 1 =

Fo = Fourier =
C g

(We)3 (Bo) (We)Z g Df4

(Fr)(Re)4 = (Re)4 pT 3 gc 3

Heat flow time : t

Gravity = g

Frequency,

Gr = Grashof = (Re)Z (BAT) (pZL3 gBAT_(Fr) =_  /gc z-/

Gz ; Graetz ; (Re)(Pr)-_ \-_]

{, z H a gc}
Ha = Hartmann = \ _--P_pva

f

Hv = Heat Value = Cp

\CpZXT]

k= Specific Heat Ratio =(C_vP )

L w e w

D' _' "_' _' etc.

see speed

Heat value = q

Evaporation enthalpy = hf

Length, repeated

C cC )Le = Lewis = (Sc----]=

Ma =Mach = v--A:,vz , etc. Velocity,
V V

repeated : v l, v z, etc.
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DIMENSIONLESS NUMBERS

Nu= Nusselt= (_)

(3600 Cp pvD)Pe = Peclet = (Re}(Pr) = k

Heat surface conductance = h

(Rm) ( i_p o- gf gc_Pm = Magnetic Prandtl = (Re-----_= Jm P /

(3600cp_fgc) Heatflow k)Pr = Prandtl = .....k = (Cp_p

(3600 D3 Pz gBAT Cp)Ra = Rayleigh = (Gr)(Pr) = k_f gc

Re = Reynolds = _---_c] \_-_c/ Viscosity gf

e e

RF = Roughness Factor =_ or_ Roughness height = e

Rm= Magnetic Reynolds =(gp_LV)
Jm

Slenderness Ratio =(L)

SF = Shape Factor =(L)

Sh - Strouhal = _

Electrical conductivity =

Mass diffusivity = D m

= Shape factor

Rotary or cycle speed = N s

,Nu ( h )St = Stanton = (Pr)(Re) = 3600CppV

P
Th = Thoma =

AP

Vi= Vibration Number = W
D Amplitude of vibration = W

pv z D_
We = Weber = \-_gc ]

Surface tension = T
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DIMENSIONLESS NUMBERS

DIMENSIONLESS NUMBERS AS RATIOS OF FORCES. Many dimensionless

numbers may be derived from force ratios, which gives some conception

of the significance of the dimensionless number. The force of acceleration

is also known as the inertia force.

Re = Reynolds Number, a viscous force parameter

(Force of Deceleration)

(Viscous Drag Force)

pvL

_f gc

Eu = Euler Number, a pressure force parameter

(Force of Pressurel

(Force of Acceleration)

PA

PA gc PA gc Pgc

(AL) A

Fr = Froude Number, a gravity force parameter

(Force of Acceleration)

(Force of Gravity)

g gL gL

We = Weber Number, a surface tension force parameter

We --

(Force of Acceleration)

(Force of Surface Tension) TL

TL gc TL gc T gc
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DIMENSIONLESS NUMBERS

Ca = Cauchy Number, an elasticity parameter

(Force of Deceleration)

(Force of Compression) EA

EA gc EA gc E gc

Dimensionless numbers as energy ratios. Any of the preceding

dimensionless numbers viewed as force ratios can be converted to

energy ratios by multiplying numerator and denominator each by L,

since energy = W = FL.

The force to produce acceleration times distance becomes a kinetic

energy.

Dimensionless numbers as stress ratios. Any of the preceding

clim_n_icmlo_.q n, rnhar_ viewed a_ fnrco ratia_ can ho convortod to

stress ratios by dividing numerator and denominator each by A,
because stress = S = F/A.

DOMAINS. In dimensional analysis the various physical phenomena

may be divided into various domains which are discussed in detail

under the respective headings. Importan_t domains so discussed are:

Bubble Mechanic s

C ombus tion

Convection Heat Transfer

Drag

Elasticity

Electromagnetic

Flow

Magnetohydrodynamic

Nucleation

Pressurization

Propellor

Pump

Vibration
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DRAG COEFFICIENT

Dimensional analysis examples. ARDA dimensional analysis has been

applied to physical phenomena domains as previously listed and also to

the following topics discussed in more limited scope.

Bubble Pressure

Buoyancy Number

Falling Body

Fluid Drag of Viscous Fluid

Orifice Flow Produced by Gravity and Pressure

Shear Stress in Pipe

DRAG COEFFICIENT. Although not usually so defined, the drag coefficient

C D is 2(Eu) when Eu is the Euler Number. It seems advisable to so

consider it.

Drag Coefficienth
CD = \ Dimensionless ]

pv z

= A

[I (_) vz] [KinetivEnergy ft-'_]ftIbf]

Inertial Force]

(Drag Force)

(Inertia Force)

DRAG DOMAIN. ARDA analysis gives

Eu = f(We, Fr, Re, L)
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DRAG DOMAIN

Summary. Dimensional analysis is used to obtain the general fluid-drag
relation

Eulerr) .. C( Weber _-a(Froude_-b(Reynolds_-C dNumbe \Number! \Number! \Number! (L)

or

Eo=CtWe,-al ,,-bl e,-C( )d
This equation is applicable for regions or regimes extending from those

of very low Reynolds numbers in which Stokes' law is valid, to regions

having large Reynolds numbers. The drag of ships is also included as

a region. These regions emerge or recede as certain properties

become dominant or decrease in importance. This general equation

permits study of the inter-relationship of regions and permits an

overall correlation which should enable better understanding of funda-

mental principles governing flow drag phenomena.

General drag equation. The general equation for the drag on bodies

immersed in fluids is dependent on properties of the fluid and conversion

factors as follows:

i. F = drag force, lbf, always associated with an area

2. A = area, ftz

3. T = surface tension, ibf/ft

2
4. g = gravity or acceleration field, ft/sec

5. gf = viscosity, Ibf sec/ft z

6. L = length, ft

7. v = velocity, ft/sec

8. D = diameter, ft

o gc = acceleration constant, 32.2 ibm ft/ibf sec 2. Introduced

because in turbulent flow Ibm masses are accelerated by ibf

forces, i.e., the F = (m/gc)a law is involved in flow

phenomena.
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10. p = A(m/V) = difference in mass density between inside

and outside fluids or between a solid and a fluid or of a

fluid alone if only one fluid is present, ibm/ft 3.

The relationship between F and these factors may be written in usual

units with C as a dimensionless numerical constant and a, b, c, etc.

as exponents, as

F Ibfh = ibf_a/ ft _b/ Ibf sech c d ft Ie
(_ f--_] C (T -_] \g s--_cZ} _}lf ft z ] (Lft) (v _ec/ (Dft)f

ibf sec z] ft3 ]

The individual unit-properties and exponents on each side of the

equation must be equal. For example, for ibf

(ibf)a + c - g(Ibf)I

Writing successively the equality for the exponents for each one of the

unit-properties such as ibf, ibm, etc.

Ibf i = a + c - g g = a + c - 1

Ibm 0 = g+ h h = - g = -a - c + 1

sec 0 = -2b + c - e - 2g e = -2b + c - 2g

= -2b + c - 2a - 2c + 2

= -2a - 2b- c + 2

ft -2 =-a+ b - 2c + d + e + f + g - 3h

= -a + b - Zc + d - 2a - 2b - c + 2 + f + a + c - 1 + 3a

+3c-3

=a - b+ c+ d - Z+f f= -a+b - c - d

Substituting these values of g, d, e and f in the original equation
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= C(T)a(g)b(_f)C(L)d(v )-2a - 2b - c + 2,(O )

(gc)a+c- l(p)-a-c+ 1

-a+b-c-d

Rearranging

pAvZ/
=C

Checking units in each of the groups in the preceding equation shows

that each group is dimensionless in that the units of the numerator

cancel the units of the denominator. Such groups occur frequently

in fluid flow and heat transfer and are called dimensionless numbers.

These dimensionless numbers have been given names. Thus the

previous equation may be written:

(Eu) = ( Euler I =_ 1XTllm h_'r

I" WeOer 'l_I'eroude h(l_eynoids
\Number! \Number] Number !

-b(R e. -c/L_ d
C (We)-a(Fr) ) k_]

EGenerall

Drag I

quationJ

Drag equation by ARDA associative method. With experience examina-

tion of the defining equation enables direct writing of the dimensionless

number equation.

(AF--)= f(T, g, Ff, L, v, D, p)

By inspection

T

involves the force dimensionless number Eu

involves the surface tension number We

g involves the gravity dimensionless number Fr

involves the viscosity dimensionless number Re

L and D result in the dimensionless number L/D
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The required relationship is then

Eu= f(We, Fr. Re, L/ or Eu
\ D/

or

Flow region i. Flow at very low Reynolds numbers is considered as a

first region, applicable to slowly falling rigid bodies immersed in

fluids. For laminar flow the drag (F/A) is not proportional to velocity

squared, vz, in the Euler number, so the effect of Eu must be negligible

or (Eu) = I. Also the shape of the solid body is not determined by

surface tension, T, so that (T) a = (T) ° = l or a = 0. The general equa-

tion then becomes:

d

Eu = 1 = C We -° Fr_-b Re_( ) ( ) ( )

The values of C, b, c and d must be determined experimentally. For

Re < 2, experiment indicates that C = 18, b = -i and c = 1 for a sphere

for which L = D so that = = 1.

1 = 18(Fr)1(Re) -I
[or I = 18 Fr/Re if Re 1is based on D

= 18Iv z_(_fgc_

8( f gc
=l \T IT

pg g
gc gc

=18

where T = Rz

4R z I

V = 1 _[-_--) where

I(_)sphere - (-_)fluid] = 18(_ zv)
which is Stokes law
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Stokes law is generally assumed applicable from Re = 0 to Re = 2.

Flow region 2. For drag on a ship the surface tension T is negligible.

Thus (T) a = (T) ° = i, or a = 0. Customarily (CD/2), where C D is a

drag coefficient, has been used instead of Eu.

becomes:

(Eu) = C(We)-°(Fr)-b(Re)-C(Z) d

\pAvZ/ = -_-- = f r, Re,

F : CDAL-f   /

The general equation

where A = L z

Fr'

Flow region 3A. If surface tension T and gravity g are unimportant,

then (Ti''a= (T) ° = 1 or a = 0, and (g}b = (g}O = I or b = 0. The general

equation becomes with (CD/2) written for Eu

(Eu) = = C(We)-°(Fr)-°(Re) -c

CD = ZC(Re)-C(L) d

Experimental evidence by Lapple and Shephard (16, 18) for solid bodies
d

°f[D)IT\ = id= 1 inthe regionhaving Reynolds numbers greater than

that for which Stokes' law applies (above Re = 2), indicates

C D = 18.7(Re) -°'68

There is some indication that this region may extend to Re = 700.

Flow region 3B. If surface tension T and gravity g are unimportant,

then (T) a = (T) ° = I or a = 0, and (g)b = (g)O = I or b = 0. The general

equation becomes :

(Eu) = C(We)-°(Froude)-°(Re)-C(L) d
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(_gc_:_,_e,-_(_)_
pAvZ/

(-_) (_/'-- = C(Re) -c -- vz

d

gc

(<)(_) (_)Using = = and if d - i

\D/ g

where

AP= (v) H

Or

AP

= H = head,

ft

H - [ f(Re)] \_]-_gg Darcy Equation]

This is the Darcy equation for head loss for turbulent flow in horizontal

pipe, where f the friction factor is a function of Re = ZC(Re)-C. Multiply

both sides by (w/m)

w__i [f(Re)]m

where

--- 0 r - , thus

mg gc
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Mass Tbm/= [f(Re)] 2gc

Flow region 4. If the effect of viscosity is negligible (_f)c = (_f)o

or c = 0. The general equation becomes

(Eu) = (_)= G(We)-a(Fr)-b(Re)°(_)d

If -a = 3 and b = i, this becomes

(_t (We)3 (We)3 (Re)4= C (Fr) - G (Fr) (Re) _[

pv z D_ 3

! <Rel

/-3__6 I-,3\ 11-,_.\ / ,,.4 _ 4 \
I ....

= C i T 3 gc 3 )_)Ip4v_D') (Re)"

= c(g_f4/gc_ (Re)4
pT 3 }\

= C(G) (Re) 4

where

= 1

G = dimensionless number, unnamed

(We) 3

(Fr)(Re) 4
Comparing last and first]

equation for GD/Z ]

The dimensionless number G has appeared in the literature in discus-

sions by Rosenberg (17), Peebles and Barger(18), and Fritz (i0), with

some evidence to show that the relation (Eu) = C(G)(Re) 4 is applicable

for Re 700 to 1300.

Flow re_ion 5. 'If surface tension T and gravity g are important, the

dimensionless numbers We and Fr containing these properties are

important. It may then be assumed that the other dimensionless

numbers, Eu (containing F) and Re (containing _f) and (L/D) d are

unimportant, or Eu = I and (Re) c = (Re) ° = I, and = = i.

The general equation then becomes
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C C
Eu=I= =

(we)a(Fr)b(Re) ° (we)a(Fr) b

This appears to be a region above Re = 1300,
139 F for which Fritze (10) gives

I gT gc] 0.z_
1 - 1. zo[-;_l

1.20

I = (i. zo) 4
[ (We)(Fr)]

for liquid N z at 14. 7 psia

or

(I. Z0) 4 = 2.08 = (We)(Fr)

Evidently a = b = i.

Flow .region 6. If surface tension T is dominant, the effects of velocity

v are less dominant. Terms with vz have negligible effect or

Eu= {FgC_\pAvz) = (Eu)° Iand: (Fr) b = (vZ)°_g = I

The general equation becomes

(Eu) = l = C(We)-a(Fr)-°(Re)'C(L) d

Experimental evidence of Schmidt, Kaissling and Rosenberg correlated

by Peebles (18) andFritz(10a) as their region 3 indicates

Re= 1.91

1

_fz gc z

1

l_.
1.91[ (We)(Re) z] a

Where Re is based on D

Where We and Re are

based on D
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(Re)z = (i. 91) z [(We)(Re) z ]

1 = I. 91 z (We) = 3.65_ Tgc

\pv D/

It appears that (Re) -c = i = Re -°

has little effect.

C O

or c = 0 and _ = = i or viscosity

Summary. Results are presented in the tabulation. The Re ranges of the

various regions are approximate and the regions themselves are tentative

as there may be more regions in which certain properties are dominant,

these regions merging one into another. More study of the literature

is desirable. Sufficient has been given to demonstrate that the ARDA

dimensional analysis method and the resultant general drag equation

can be applied to data in the literature to present an overall correlation

and perhaps better visualization of flow dra_ phenomena in _eneral.
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DRAG ON BODIES IN FLUIDS BY ARDA

Region iProperties (Eu)=(CD_ =
\Zl

Extent of these _ ._

regions is ._ "_0 (Euler) =

defined with Re E _0
based on D o z

1 A(_) T [(Eu) = I] =
Stokes Law

rigid sphere in (_1laminar fluid IZf Eu A w

Re<Z

Z p

Drag F on Ship
v

of Cross

Section A

3. a. Solid

body in laminar
fluid

Re 2 to 700

3. b. Pressure

drop turbulent
flow horizontal

pipe

4

iSurface tension
dominant

Re 700 to 1300

5

T and g
dominant

Re > 1300

6

Re > 700

-a

C(We)

-a
C(Weber)

pv z D -a

/Tg c _ a

(Fr)'b

(F roude)

•c a ]

-C
(Re)

-b
(Reynolds)

f gc/

-C
(Shape Factorl

gc

}Lf gc_

Stokes Law

\pAv V =
C[(We)°=l] (Fr) "b

¢

= Cf r, Re, =-_--

(Re)'e

Ship Drag

V g

C[(We) ° =1] [(Fr)°=l] (Re)'C

C D = 18.7(Re) "°'f0 Lapple and Shepherd

L_
H= [f(Re)](D)_ Darcy Equation

T
C(We)'a (Fr)-b

CG(Re) 4 where G =

[ (Re)°ffi 1]

gPf* gc_

T

g

[Eu= 1] =

F
Z. 08 =

C(We) -t

(We)(Fr)

(Fr) -t [ (Re)°= 1]

T v [Eu= l] C(We) a

(1.91) z (We)

[(Fr)°= I] Re "c (D)d

Schmidt, Kaissling, Rosenberg

via Peebles
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ECKERT NUMBER

DRAG ENERGY.

Force /XF

Consider the fluid flow element.

I 4-- F-

<-.]

-_ Drag = F _---

Density = p

(Drag Energy) = (Drag)L

=FL

= (Z_F)L

_ r.,.'.r,L

= VAP

= A(PV) for incompressible fluids

Velocity V

Thus for incompressible fluids any decrease in flow energy is used to

overcome drag.

ECKERT NUMBER. The Eckert Number occurring in heat transfer is

a conversion of kinetic energy to heat capacity.

KE _ (Heat Capacity)
J

Eckert Numb er 1

= \Dimensionless/

- (Heat Capacity)

i mv Z

2gcJ

= mCpAT

Ec
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ELASTICITY DOMAIN

:_I__v_gc_)
1 (v2 

_)(3221bm_t_ ftlbf_• ibfsec 2] (778 Btu ]

ELASTICITY DOMAIN. ARDA analysis gives

Ca = fcn (Fr, We, Eu,Re)

Derivation of elasticity domain.

modulus of elasticity E.

Ibf

ft

ibm

Elasticity is usually defined by the

/ lbf\

_Pressure }-_] (plbf_

=/change in length ft_ = ftz] =(_L f-_]lbf_,or,g,na,,e_ _, (_)
E = C(D) a (p)b (gc)C (v)d (g)e(T)f (p)g (_f)h

(E Ibf\ft-T).= C (D ft) a(p ibm_b(gcibmft-7"] Ibfsec2]_c (v sec/ftId (g _ft )e

r Ibf_ f/ Ibf\g/ ibfsec_h

1 =-c+f+g+h

-2 = a - 3b + c + d + e - f - 2g - Zh

-2 =a+ (-3 + 3f+ 3g + 3h)+ (f + g- 1 +h)

+ (-2f - 2g - 2e + 2 - h) + e - f - 2g - 2h

=a+f- e+h

0 =b+ c

=b+ f+ g - 1 + h

c=f+g- l+h

a=-f-Z+e-h

b=l-f-g-h
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ELECTROMAGNETIC DOMAIN

sec 0 - -2c - d - 2e + h

= -2f - 2g + 2 - 2h - d - 2e + h

C(D)-f - 2 + e - h (p)l - f - g - h(gc)fE

(v)-2f - 2g - 2e + 2 - h eT fg pg(_f)h

\or ] \v ] \v oD] \ pv ] \ p'_-]

(Ca) = C(Fr) e (We) f (Eu) g (Re) -h

This is also obtainable as a special case under Flow Domain.

ELECTROMAGNETIC DOMAIN. ARDA analysis gives

Rm = fcn (Rm, Eml, Em2)

Derivation of electromagnetic domain. For electromagnetic phenomena

occurring in radio antennae, cavity resonators, eddy currents, skin-

effect in bus-bars, transformers, etc. (24, p. 116):

(_-_) =fcn (E, _, _p, 0-, H, L, t, Jm)

where

= current density,
ft_

volt

E = electric field strength,

amp z see z
c = electrical permittivity, ibf ftz

ibf
= magnetic permeability,_p

d =-2f-2g-2e+2-h

+g-l+h

= electrical conductivity, amp
volt ft

H = magnetic field strength, amp
ft
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ELECTROMAGNETIC DOMAIN

L = length, ft

t = time, sec

Jm = conversion-constant factor, work to joule electrical units

ft Ibf ft ibf
= 0.738 .--.--- - 0.738

3oule amp volt sec

These units are more completely defined under the section on

Electromagnetic Unit s.

amp

lbf

adding

From

lbf

-_ c(EV°it_a(_ amp2 secZ_ bft2 ] lbf V

( ftlbf ) h(L ft) f {t sec) g Jm amp volt sec

amp H
volt ft ft ]

1 =2b - 2c + d+ e - h

O=b + c +h

l=b-c+d+e c=-l+b+d+e

0 =-b - 1 +b+ d+ e+ h h=l -d-e

volts 0 = a - d - h

sec

ft

O=a-d- l+d+e

O=2b+g -h

0 =2b+ g - i + d+ e

-2 =-a - 2b - d - e+f+h

-2=-1 + e - 2b - d - e+ f+ 1 - d- e

= C(E) 1-e(e)b(_p)-l+b+d+e

(t) l -Zb-d- e(tim) l-d-e

a=l -e

g = 1 - 2b - d - e

f = -2 + 2b + 2d + e

(_)d (H)e (L)-2 + 2b + 2d + e
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ELECTROMAGNETIC FLUID PARAMETERS
%

-e__./--\_ _ _ 1\__!
(Rm) = (Rm)d(Eml) b (Em2) -e

i = (Rm) a (Eml) b (EmZ) e

This equation is really a special case of the magnetohydrodynamics domain

equation in which the force parameter Eu = i.

whe re

d- 1 = a, -e = c

Rm = magnetic Reynolds number

Eml = electromagnetic dimensionless number 1

Em2 = electromagnetic dimensionless number 2

The dimensionless numDers _sml an_ _m/_ ao not seem to nave accep_ea

name s.

ELECTROMAGNETIC FLUID PARAMETERS. Analysis in this domain

has indicated the existence of a number of para_leters some of which have

found names and others which will be designated En_l, etc. Also see

under Electromagnetic and Magnetohydrodynamics Domains.

Magnetic Reynolds Number_

Rm = \ Dimensionless ]

_ -__--_/_sec_
amp volt see/k /

Rm = (Re) -l(Em3)(Ha) [Also see under Magnetic

Reynolds Number ]

Also, (see under Magnetic Reynolds Number)

Rm _

_p LZ (LI--_)_

JmtE ftibfsec)(tsec)( volt 0. 738 volt amp ft J
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ELECTROMAGNETIC FLUID PARAMETEI_S

Eml = (Electromagnetic Number i)Dimensionless

v 2
= t2 = (_p )E

( ibf _( amp2 sec2)[ L2ft2 _: _p_--_) _ lbrrt' _s-_e )
2

V (Fluid Velocity) 2

- (Electromagnetic Wave Velocity) X

This parameter is of interest because in a vacuum the velocity corre-

sponding to _p and c in the vacuum is the velocity of light (31, p. 27-5).

Era2 = (Electr°magnetic Number2)Dimensionless

= \bLpHL = b_pH v

0. 738 amp volt sec ft /

Era3 = (ElectromagnetiCDirnensionlNUmberes s 3)

gc ibf sec _V ft3

(Kinetic Energylbfft)vft _

Magnetic Energy lbf f't)V ft _

- Ratio

Ibf)Inertial Stress ft--T

M ibf \agnetic Stress f-_-)
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]ELECTROMAGNETIC FLUID PARAMETERS

where

IHartmann Numb er1

Ha = \ Dimensionless ]

amp ] volt ft] ft"

ft ibf )Jm amp volt sec"

(., ec)
(Magnetic Viscous Stress)

{Ordinary Viscous Stress)

(Magnetic Prandtl Number_
Pm = _ Dirnensionless ]

_l-nj _lwagnerlc rveyno±cts i_ulnoer!

= (Re) - {Reynolds Number)

btp o-btfmc

Jm p

(_tp lbf _ arnp _(_flbfsec_(32.2 lbmef_ttc2 )am-_/(o- volt ft/ ft 2 ] lbf s

( ft Ibf )( ibm_O. 738 amp volt sec P _/

btp = magentic permeability, ibf/amp 2

= electrical permittivity, amp a sec2/Ibf ft2

H = magnetic field strength, amp/ft

E = electric field strength, volt/ft

= electrical conductivity, amp/volt ft

Z = length, ft
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ELECTROMAGNETIC UNITS

t = time, sec

v = velocity, ft/sec

Jm = conversion constant factor, work to joules

= 0. 738 ft ibf/joule = 0. 738 ft Ibf/amp volt sec

gc

z
= conversion constant = 3Z. 2 lbm ft/ibf sec

ELECTROMAGNETIC UNITS. Electromagnetic field quantities are

established by the following laws, expressed by equations in engineering

units of ibm, ibf, ft, sec, amp and volt.

Conversion factors to other systems of units. If it is desired to express

these quantities in other units such as MLT units, a conversion factor

Ibm ft ) be used to eliminate force bysuch as gc ib sec may
J

expressing it in mass units. In the case of electrical phenomena a

fourth unitbesidesmass, length and time is required as a minimum

(Z3, p. 87; Z4, p. 43). This unit can be an ampere, a unit of _, e,

etc. In the MET amp system a conversion factor of

c Ibf sec m amp volt sec

would be required to eliminate volts by expressing it in MLTA units.

Force between two magnetic poles R ft apart.

F Ibf _ {m magnetic pole}(m magnetic pole}

(_P Ibf ft /

Also

1 F

=

2_-_= =
[Definition of H]

F = _pH2R z

(
lbf ft" / \ Ha

known as .magnetic force

poles '

= ( ft j
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ELECTROMAGNETIC UNITS

Force between two electric charges R ft apart.

F ibf = (q coulomb)(q coulomb)

e c°ul°mb 2\ 2ibf ftz )(R ftz)

qz amp2 sec 2

= f amp 2 sec2_

e ibf ftz ](R ft2)

Also,

1 F

= = (E Jm) z

F = ( E 2R 2Jm 2

= Ibf ft2 _E v°itz 2ft2

Biot law for electric field strength H.

H ibf _ =
pole]

Evidently,

pole]

I amp L ftR2ft 2 )

E electric field units.

F
E -

Jm q (Jm

= magnetic field strength

F Ibf

ft ibf )amp volt sec (q amp sec)

F volt_ volt= :)=E

[Definition E]

[Force of Electric Field]

ft2 ibf z )738z amp2volt 2 sec 2
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ELECTROMAGNETIC UNITS

E electrical permittivity units.

Z

( = FRZ

qF ampZ secZ_ amp2 secZibf R 2ft 2 J = E ibfft 2

To eliminate force units

amp2sec2_((E Jm) = Ibf ft2 j 0.738

2

[ From F = _ ]
cR

ft Ibf )amp volt sec'

amp sec
= (0. 738E) volt ft

H magnetic field strength units.

By definition

- _pR T

H =1amp
L ft

rnrn ]

[.from F = -_j

[Blot Law]

[Assuming L ft = R ft]

_p magnetic permeability units.

(Blot Law above)

F 12

_Xp

[Assuming L ft = R ft]

F Ibf _ Ibf

12 ampZJ = _p

To eliminate force units

Jm ( Ibf)< 1_P_--7 ___
ft ibf = 0.738

0. 738 amp volt sec

volt sec

amp ft
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EULER NUMBER

electrical conductivity.

0" _---

1 1

(Resistivity)- R(A)

[where R = resistance]

V

IL [where I K volts ]VA

(IVamps L ft2) ampvolts A ft = _ volt ft

ENERGY RATIOS. Dimensionless numbers may be frequently interpreted

as force ratios (see Force Ratios). If both numerator and denominator

are multiplied by distance L they are also FL or energy ratios. A

typical example follows dependent on its nature either a force or energy

ratio or some combination may be taken as most descriptive.

Eu =
(Flow Energy)

IT7_ ._ _ .L-" _ D ...... _k

2Pg c (PV)

EQUATIONS, DIMENSIONALLY CONSISTENT. The ARDA concept is

based on the premise that every equation must be dimensionally consistent.

The units and exponents on the left-hand side must equal the units and

exponents on the right-hand side of the equation. This principle is appli-

cable to the equation as a whole and is also applicable to each one of the

unit-properties.

EULER NUMBER. This number expressing a force F per length squared

L 2 is encountered in fluid flow and is sometimes called a force coefficient.

The length L is a significant length or distance in the process or L 2 may

be an area so that F/L 2 = F/A may be a force or drag per unit area or a

pressure P or pressure difference _P. The Euler number is encountered

as a drag coefficient C D = 2 Eu, a pressure coefficient (24, p. 88) and

even a wall boundary shear stress varying with the nature of the problem.

Dimensional analysis does not yield a physical picture so that additional

consideration of the physical phenomena is necessary for proper interpre-

tations of Eu,

The velocity in Eu is the flow velocity.
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Units

(Euler Number)Eu = \Dimensionless

Pgc P_ 3Z.2 ibf sec z

=---r= ( ibmh( ft )pv Pf-_-)v2--see 2

Fgc(Flbf)(3Z'2lbmft lbfsec2)

whe r e

P may be AP

A may be L z

P may also be replaced by the shear stress S (ibf/ft z ) since from

a dimensional analysis standpoint it has the same dimensions.

When S has been used it has been called Fanning Number

(24, p. 135), but the introduction of another name for the

same kind of dimensionless number is probably unnecessary.

Euler Number in terms of pressure head. Pressure P may be expressed

in terms of head H.

(_) owl_m_ _P = H where = or w =--
\g] \gc] gc

Thus,

=Hmg
V gc
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EULER NUMBER

Zu --

Pgc
-

pv

The Euler number expressed as (Hg/v 2) resembles the Froude number as

(Lg/v z) but H is a pressure head, whereas the L or D in the Froude number

i_ related to object size.

Euler number in terms Vcuft per second.

Pgc Pgc L4

Eu=---T= P('_J_zv,zpv

p Ib_\f. ft_ \2

Euler number in terms _V.

Wgc Fvgc Fgc

Power _f in terms Eu.

(rg__(ND_
¢_u_ISh_=kpD--D-r_7kv/

(FND) gc
3

---- pmav

Wgc

=p--_v =

(wft Ibf_/ Ibm ft-;g-_)\gcibfsec'7
ft _

(P-_-)_(lbm\(D ft)2( v sec,
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Eu (.E.u}(Stl
/'wgc _

• /. ft ibf_ / ibm ft

/ W'c ._ W:7:)_ 'c :bf .ec'/

= \_)= (Ibm_(N 1 )' )s-p f--_)\ _ (D ft

Eu as a number of velocity heads.

Zu =

VNumber of]

|Ve:oci_y|
Pgc P P [_ Heads J CD

v

_geV/ \gv/

Eu as a pressure force parameter• Euler number may be defined as a

ratio of forces. Force of acceleration is also known as inertia force.

Eu =
(Force of Pressure) PA

<.or e ( c)a
PAgc PAgc Pgc

- m(t_L) = (_---L) A (tL_) ='_

The pressure P may also be a pressure difference ZXP.

Eu as a drag force parameter. Euler number may also be defined as in

terms of a drag force on the wall.

]_U-
(Drag Force)

(Force of Acceleration)

F

Fg c Fgc Fgc

re(t) = (_LL)A(_)v = p---A_v
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EULER NUMBER

(Force of Pressure)
Eu as a energy ratio. Euler number visualized as a

(Force of Acceleration)

may have both numerator and denominator multiplied by (V/A) to obtain a

ratio of (Flow Energy)

(Kinetic Energy)"

Eu -
F)Vgc

mv _

PV

\gc/

= (Flow Energy)

2(Kinetic Energy)

Eu in terms of Ma.

Pgc 1

Eu = _ = v[" _

1

1

1

1

- k(Ma)Z

1

(Eu)k- (Ma)Z
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FALLING BODY

Fluid flow element. It is convenient to consider an element of flowing

fluid.

Force AF

_P

L

Drag = F

Density = p

_-------J_ V elo city V

Perimeter P

FIG. FLUID FLOW ELEMENT

Fluid flow may be visualized as a continuous variation of forces on a

fluid particle to change the particle velocity.

If the overall fluid velocity does not change these forces and velocites are

internal (or microscopic).

Kinetic energy is the work (ft ibf) energy used to produce an overall

(macroscopic) velocity.

Euler number is a ratio of the flow energy (PV) used to produce an

external kinetic energy of an overall velocity in a given direction.

When flow energy (and potential energy) are not completely converted into

external kinetic energy, the remaining part results in internal kinetic

energy in which the fluid particles are each moving with varying fluid

velocities in various directions (disorder) in turbulent flow. This move-

ment may be frictionless or some of the energy may appear as heat

tending to increase internal energy unless removed.

FALLING BODY. A freely falling body in mechanics falls a distance S

which may be presumed to be a function of weight, gravity and time.
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FLOW CONCEPTS

g ft _bs ft = C(w lb) a --C_} (t sec) e

ib 0=a a=0

ft l=b b= i

sec 0 = -2b +C c = 2b = 2

s = c(w)°(g)'(t)z

= Cgt z [weight has no

effect]

FANNING NUMBER. See Euler number.

FLOW CONCEPTS. One concept of fluid flow has been given under

Reynolds number in which semi-microscopic particles of fluid are

conceived of as varying continuously in velocity in one direction from

zero to v where v is the mean fluid velocity in feet per second. One

hypothesis is that turbulent flow exists in which small elemental

volumes V of fluid, as a result of viscosity forces, are continually

varying in velocity from 0 to v in the direction of main stream macro-

scopic velocity, this 0 to v acceleration change of velocity being super-

imposed on the macroscopic velocity. This variation of 0 to v velocity in

the direction of flow can exist only if the fluid elements are rotating with

a peripheral velocity v.

The picture of turbulent flow with viscosity then emerges on a semi-

microscopic scale as that of Fig.

1

Macroscopic

ft
Velocity v-

sec

/////////// _

Periph. \ ]

VeXocity\/

FIG. SEMI-MICROSCOPIC TURBULENT FLOW
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i FLOW DOMAIN

Here the fluid is pictured as semi-microscopic elemental cubes or spheres

of volume V all rotating in one direction with the viscosity shear resistance

forces between elemental volumes requiring the expenditure of work. The

rotating cubes or spheres are moving with an overall velocity v.

FLOW DOMAIN. For the flow of fluids ARDA analysis gives

Eu=fcn<_, Fr, Sh, LD, Re, Ca, Fa, We)

Derivation of fluid flow domain. A general equation may be developed for

the interaction of an elastic vibrating solid with a fluid. Usual symbols

are applicable with the addition of the following special symbols.

Ibf

see

ibm

O = angle presented by force of solid to moving fluid

= angle formed by movement of center of gravity of solid with

respect to moving fluid

E = modulus of elasticity

S = shear modulus

f = frequency of vibration or rotation

F Ibf C(@ deg) a (¢bdeg) b <v

ft

= "_ec] (m ibm) d (D ft) e (L ft) f

(P Ibm'g(gft-_/ se--_c/ft,h (go lbmlbf sfe_c)i( _f lbf sec_jftz ]

0=a+b

i =-i+ j+ m+ n+p

0 = -c - 2h - 2i + j - k

= -c - 2h - Zj - 2m - 2n - 2p + 2

+j -k

0=d+g+i

=d+g+j+m+n+p- i

b _ -a

i=j+m+n+p- 1

c = -2h - j - 2m - 2n

-2p+ 2 -k

g=-d-j-m-n-p+ 1
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FLOW DOMAIN

ft

where

0 =c + e + f - 3g + h+ i - 2j - 2m - 2n - p

0 = (-2h - j - 2m - 2n - 2p+ 2 - k) + e + f

+ (3d + 3j + 3_n + 3n + 3p - 3) + h

+ (j + m + n + p - i ) - Zj - 2m - 2n - p

= -h+ j + 3d - 2 - k+ e+ f + p

F = c(@) a (_)-a

(h)h - j - 3d + 2 + k - e - p(p)-d - j - m - n - p + i

(g)h (gc) j + m + n + p - 1 (_)j (f)k(E)m (s)n (T)p

f =h - j - 3d+ 2

+k-e-p

_JIv_-2h - j - 2m - 2n - 2p + 2 -k _J_m_d(D) e

k (D_ e
(Sh) \T] (Re)j (ca)m (Fa)n (we)P

\

(Eu)q = C(_)a(Fr)h(_L_)d

(Eu), (Re), etc. are dimensionless numbers.

(Eu) has been replaced by (Eu) q.

m
The expression--;-_ is obviously a statement that = 1

p,.- P

which can be dropped as unnecessary.

The preceding equation contains a number of terms because of its

comprehensive general nature. In any specific application, dimensions

not applicable are omitted by considering that the exponent is zero or

mathematically: (property) ° = i. For example:for incompressible fluids

the effects of elasticity are omitted by setting (E) m = (E) ° = i, also

(Ca) m = (Ca) ° = i,
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FLOW DOMAIN

In a similar manner any property not included in the preceding general

equation may be included by including its proper dimensionless number

as discussed under the associative ARDA procedure.

One term frequently added is roughness, included as a dimensionless

e

length number _ (28, p. 128).

Fluid domain equation by force summation. Fluid flow may be visualized

as a macroscopic flow of a vast number of microscopic particles. The

motion of the microscopic particles is constantly varying in velocity, the

varying force of acceleration or deceleration F m being provided by the

algebraic sum of all forces acting on the fluid particle.

Some of the forces that may act on the fluid particle may be viscous drag

force F_, force due to pressure Fp, gravity force Fg, surface tension

force FT, elasticity force F E, shear force Fs, etc.

It was shown under Dimensionless Numbers as Ratios of Forces that

each one of these forces may be expressed in a dimensionless number,

thus

Flow Motion = f(Fm, F_, Fp, Fg, F T, F E, F s)

Fm Fp Fm Fm Fm

= f ' F m' Fg ' F T ' F E '

= f(Re, Eu, Fr, We, Ca, Fa)

If any of these forces is absent, the particular dimensionless parameter

is absent. If any other property is present that may affect the motion of

the fluid particle, it should be added to the functional expression for

properties and its corresponding dimensionless number should be added

to the functional expression of dimensionless numbers.

Thus, if angles such as @ and 6, frequency N, and significant length

parameters such as D are to be included they, along with their corre-

sponding dimensionless numbers are added to form the complete fluid

domain equation and the preceding relations become

Flow Motion = f(F m, F_, Fp, Fg, FT,

Eu-f e, Fr, We, Ca, Fa,-_, Sh, -_

F E, F s, @, 6, N, D)
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FLOW ENERGY

FLOW ENERGY. This energy in ft lbf possessed by a flowing fluid is the

work required to push the preceding fluid.

(p Ibf_FE = FL = (PA)L = P(AL) = PV = ft-_/(V ft 3) = (PV) ft lbf

Flow element. Consider the element.

zXF

AP

_-_ L

F : Drag

Flow energy change.

AFE = A(Flow Energy)

= A(PV)

= PAV + VAP

= PA_L + LA_P

= FAL+ LAF

= AW + LF

= AW + Drag Work

where AW = AWork to change value of fluid.

Thus, any flow energy decrease is used to overcome drag.
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FLUID DRAG

FLUID DRAG.

Domain. For drag of a viscous fluid only

= 7]

lbf 1 = b- e

ibm 0 = a + e

O=a+b- 1

see 0 =b - d - 2e

=b - d - 2b + 2 = -b - d+ 2

ft 0 = - 3a - 2b + c + d - e

=- 3 + 3b - 2b + c + 2 - b - b - 1

=-2 -b+c

F = C(p) l - b (_f)b (L)2 + b (v)2 - b

Fgc (_fgc_ b
= c \7-f7

This is also treated under Drag Domain and Fluid Flow

sec / I_ se_ 2')

(gc)b - 1

e=b- i

a=l -b

d=2 -b

c=Z+b

This is a special case of _Drag Domain
[ Fluid Flow Domain

(Eu) = f(Re)

FLUID DYNAMICS NUMBER. This unnamed dimensionless number

is encountered in the literature (i0).

[g_f4 gc 4] (We) _ (Bo)(We)

Fdl= "_'_ g--_3 -kp c _1 (Fr)(Re) 4 (Re) 4

[p g 4 ]_ (We)3

T3gc_]- (Fr)(Re)' (gc)'

, LTgc J

Gf gcj (gc)
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FORCE

p3 v 6 L 3]

T3 gc3_J

[:_v= p,]
LzF jb f,=c4jgc

p3v6 L3 2 L i

-

FORCE. A force is a "push." Force is required to accelerate or

decelerate a mass in accordance with the Newton acceleration law

written as a unit-consistent equation in engineering units as:

m lbm \1 ft )
32. lbf sec2/\

The previous equation does not contain weight w or gravity g. For a

discussion of weight see under Weight.

FORCE RATIOS. Dimensionless numbers may frequently be interpreted

as force ratios. Typical examples follow. If both numerator and

denominator are multiplied by distance L they are also FL or energy

ratios (see EnergyRatios). Dependent on its nature either a force or

energy ratio or some combination may be taken as most descriptive.

Number Ratio Formula Use

(Buoyancy Force) L 2wBAT
Nc = =

(Viscous Drag Force) _fvV

(Gravity Force) w

Bo _ (Surface Tension Force) = (TL)

wBAT F Buoyancy

A v Due to
L AT

_f _f Drag

Bubble s

93



FOURIER NUMBER

Number Ratio

,Dra_ Force)
C D =

(Inertia Force)

(Inertia Force)

Fr = (Gravity Force) =

(Inertia Force)

Re = (Viscous Drag Force) =

Formula

v__%_ _ Z\zo/L L

Use

_vZ _ Flow

bf - Vf Similarity

Fr) (_vgc) (Viscous Drag Force) StokesSt = _ee = (pR2g) = (Gravity Force) Law

l(m _vZ ]

.J
We (Inertia Force) (pv z L) L

(Surface Tension) (ZTgc) - TL TL

FOURIER NUMBER. This number occurs in transient heat transfer involving

conduction and heat capacity.

F our ie r Numb e rh
Fo = \ Dimensionless /

Btuft_fthr
= hr ftz F]k t

{_ lbm_ { Btu ._
77-7 t,cp l_ r)

where a = thermal diffusivity ft2/hr.
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FROUDE NUMBER

FROUDE NUMBER. This number expresses the effect of gravity g.

Froude Numbe r_
Fr = \ Dimensionless/

v2 ft_
v 2 sec

- ft
gL (g se__ec__cl(Lft )

v

Froude Number has been frequently defined as :_g but this form seems

inconsistent with other dimensionless numbers which do not have 1/2

powers, thus, is not a preferred form.

Gravity affects flow in general.

Froude Number in terms of _r.

Surface waves are a gravity effect.

For flow = _r ft3
sec

gL(L2) '

_r z / _r ft---_-3/2
sec/

- gLS - (g f_)( L v+_5*_

Froude Number {n terms of (power). For Power = Fv

v3 \/ Fg c

(Fv)gc _ (Power) gc

- pLT/2g3n - pLT/tg 3j2

Physical significance. Froude Number may be visualized as a measure

of the kinetic energy indicatedby a velocity resulting from a decrease in

potential energy. Potential energy is dependent on gravity g. When this

aspect is considered L may be a H so that Froude number may be written

as:

v 2
Fr =_

gH
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FROUDE NUMBER

Froude Number as an energy ratio.

KE

(Fr) _ ½(PE)

Z\6/
1

7wH

v 2

gH

Froude Number as a force ratio.

(Force of Acceleration)
Fr=

(Force of Gravity)

a

v,
g gL gL

Froude Number as (We)/(Bo).

Fr _-

w w_i -

v 2

gL

(Eu)(Fr) relationship. For a complete conversion of potential energy to

flow energy without other energies involved.

AFE = APE

AFE

APE - 1

= 1
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GAS LAW NUMBER

(Eu)(Fr) = l

pv

(AID) gc(_) = I

VAP

wH
-l [where PAV = 0 for

incomPressible fluid]

Eu/Fr relationship. In the fluid flow equation.

(Eu) = C( )(Fr) b (Re) -j ( )

i

(Eu) (Fr) -fcn (Re)

• _ _/\_i = fcn (Re)

Eu as a measure of AFE and Fr as a measure of PE produce fluid flow

as a function of Re.

GAS LAW NUMBER. The perfect gas law is one of the most used and

familiar laws and is expressible in dimensionless number form. A

numerical constant is included.

One formulation:

i ] (T F ab s)

ft ib \
= (m ibm) R bm F abs ]

For M mole (equivalent to dividing each side by moles):

(p ibfh(V ft3 _ ibm h ft ibf )(T F abs)mole/ ab s

(1= 545 -bs/(T F abs)
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GRAET Z NUMBER

where

Thus,

M Ibm ,_mole] = "molecular weight"

M = moles

Dimensionless Number /

Gc = _ Expressing Universal /

\ Gas Constant ]

/Dimensionless Nuxnbe r_

Ga = _ Expressing Perfect /

\ Gas Law /

=i=_
1545

-_1= \-P-V-/ i545

GRAETZ NUMBER. This dimensionless number occurs in convection

heat transfer. It appears redundant in that it is a product of the more

basic dimensionless numbers (Re)(Pr) and (D/L).

Gz =
Graetz Number]
Dimensionle s s J

=L-_\_-TE_,_ _ _ _f gIc

%

{_-_ [(_)(% _ ._l
= = lbm F] "1\ _ / _-7---B-_T_ ,L _khrft2F) ]
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GRASHOF NUMBER

GRASHOF NUMBER. This dimensionless number used in natural convection

equations appears to be redundant in that it involves Reynolds Number and

another dimensionless number (BAT) = (&--_p).

Grashof Numb er_
Gr = \ Dimensionless'/

(Re)2(-_)_ (Re2)BAT = (Re)(Bu)BAT

(Fr) - (Fr) (Fr)

jD v 2 L 2'_

p2 L 3 gBAT

= _f2 g c2
[w 1here _tfgc = _s - 3_0-0

=Ibm2_ 1 s)(_T

(_f2 lbf2sec2'_(32 22 lbm2ft2_f-_ ] " ibf2 Sec I]

F abs)

GRAVITY CONSTANT. This or similar terms have been applied to several

constants which should be clearly distinguished from each other, best done

by examining the nature of their units. These constants are:

ft

g = acceleration of gravity, sec 2

gc = accleration c0nstant in F = (_c)a eq.

ibm ft
=32. Z

lbf sec 2

mm

G = gravitational attraction constant in F =

i01o ibm 2
= 3.01 x ibf ft2

eq.
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GRAVITY CONSTANT

Standard gravity acceleration g. The International Committee on Weights

and Measures (32, p. xvi) has adopted a standard value for the acceleration

of gravity on the surface of the earth.

ft

g = 32. 1740 c2se

g = 980. 665 cm
sec 2

Universal acceleration constant gc- If the Newton acceleration law is

considered to be dimensionally unit-consistent:

r lbf : L lbmft /I-

In this equation gc is the acceleration constant with numerical and unit

parts. In many systems of units the numerical value of gc is taken as

unity. In the engineering system gc has a numerical value such that

i ibm has a weight of l Ibf. Although no international group has

adopted such value it is universally customary to take the numerical

value of gc the same as the numerical value of the standard accelera-

tion of gravity g on the surface of the earth.

Thus,

Ibm ft
gc = 32. 1740 Ibf sec 2

gc = 980. 665 kgm m
kgf sec 2

This numerical value of gc thus selected is thus an unvarying constant

throughout the universe.

The Newton law and constant gc is used in a so called system of units to

relate force and mass, primarilybecause acceleration and deceleration

of masses involving forces occur in anyprocess that involves motion, even in

uniform fluid flow in which the individual particles are moving with

varying velocities.
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GRAVITY CONSTANT

The Newton law not only relates force to mass and acceleration but it

also serves to express mathematically force in terms of mass, length

and time units.

Gravity attraction constant. The constant C in the gravity attraction

law of two masses m 1 and m zhere conveniently designated by the same

symbol m and m which would be the case if they were of the same or unit

size.

where

F Ibf =
(m lbm)(m ibm)

G lbm2 \1-_ _2) (L2 ft2)

G = gravity attraction constant. Units are selected such as to

make the equation dimensionally consistent.

108 g mass 2
(Ref. 33 p. 5)

- 6. 670 dyne cm 2

1011 kg mass 2
6.670 Nm 2 (Ref. 33, p. 5)

c,o )( )kg- N 2 m 2
0. 3048

\6_6-70 Nm 2 4.4482216152605 1-_ f-_

( 2k_edA0.45359237 lbm2 ]

10
= 3.01 x i0

lbm 2

Ibf ft2

The question may arise as to why this very fundamental law was not

selected to define force in terms of mass instead of using the NewtonF =

ma law to establish the various systems of units. The reason is

probably historical in that F = ma phenomena are more observable on

the surface of the earth than the F = mm/CL 2 phenomena observable in

the motion of heavenly bodies. There is some inconsistency in not

using this mass attraction law because the laws for magnetic pole m

and electric charge q repulsion have the same form.
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HEAT VALUE NUMBER

mm __q_9_F =- and F =
_L 2 Y_L 2

These laws are used for the definition of electromagnetic units (see

Electromagnetic Units).

HEAT VALUE NUMBER. It is desired to develop a dimensionless

number containing the heat release or heat value q.

Dimensionle s s_
Hv = \ Number /

(D enominat o r )

Btu

q ibm

Cp Btu..'_(AT F)ibrn F/

where the denominator has been completed by inspection by inserting the

two best known dimensions having the proper units.

HYDRAULIC FLOW. Equations such as that of Poiseuille, D'Arcy and

Chezy are obtainable from the ARDA drag equation or flow equation (see

Fluid Flow) by retaining the basic parameters likely to be involved,

namely Euler for drag, Froude for head and Reynolds for flow.

Eu=C(Fr)a(Re)-b (m) -c

Poiseuille laminar flow. Omitting the Fr term as surface is not involved

\ pv2 1
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HYDRAULIC FLOW

AP D2] v

_.;,-

A ibf,_AP 8R_/D_ = P f-P78R_f?
128 _f k'_) =-{-_ /.. ibf sech

f ft2 ]

D ft_
(Ref. g4, p. 16)

also,

(Ref. 24, p. 100)

AH = 32 _Lr+_v _

(v)2D
V ibfh

(Ref. 30, p. 98)

where

= volume flow rate, ft3/sec

AH = head loss, ft.

Friction factor f for laminar flow. To obtain the D'Arcy equation in

terms of a head H the flow equation is used with the Froude number

containing H rather than the Eu containing Ap. The constant C is the

same as for the Poiseuille equation.

1 = 32(Fr)h(Re)-I (L)

fr - Re\D! (A)

H = 2g

=f L v 2 =f

/ v 2 ft2 \

(Ref. 30, p. 98)
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HYDRAULIC FLOW

where

f = friction factor

64 ZL
_ _ (Fr)Re D

Chezy laminar channel flow.

derivation of f:

i = 3Z(Fr)(Re)-l(_ I-

1 = 3z kv _/E

Re (_@_H
=T\v 4/E

Re (__ wD'_H__

- 8 \v _ 4_D/L

g AH
=7-

v = Re T

v E
"N/ \Re]

=4f/WE

-- T

By definition] (Ref. 30, p. 99)of f J

(From Eq. A)

Using the same equation as was used in the

(where P = perimeter)

(Ref. 30, p. 163)

(ref. Z4, p. i01)
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INERTIA

where

£
C

.,,/ k_/

R = hydraulic radius = hydraulic depth =
flow area

wetted perimeter

H

-_ = channel slope {ft drop per ft length)

Friction factor f turbulent flow. Experiment (30, p. 99) indicates

at moderate Re: for rough tubes

f =fcn (Re) for smooth tubes

at high Re: f = fcn(D )

e

where _ = roughness, ft height per ft tube diameter.

INERTIA. This is a property of mass such that it tends to resist change

of velocity•

Inertia force. The force required to change velocity 0 to v or v to 0

depends on the mass, the velocity and the distance L.

m m{v- 0_F----a=

gc gT _,--T--/
where L = Vavg

v 2L

t=_tort_ v

m v

-gc

/ ft2

_±(m_£_! ImIbml_v2
• ibm ft

- 2\gc/L - 2 (32 2 {L ft)
lbf sec2J

v ft 2
_ __]{w]v__2 1 (w lbm} se-'_'c /
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INERTIA

Inertia or kinetic energy. The work energy required to accelerate a

mass from 0 to v over a distance is:

KE =FL

m---aL rely - _L m v

\v/

L

2

= lbm ft ] v2

7 32.2 ibfse_'/

l/ _ Ibf \/2 ft2

Inertia or velocity pressure. The force per unit area or pressure

produced by a fluid changing in velocity from 0 to v depends on the

density and the velocity.

p=--= _ =
A A gc A

gc

1 (O lbm._
(v ft 2

sec2,]

lt)v ==_ gc
(3 ibmftZ Z.Z ibf sec2/

1 2 1 f-_-]<v sec2

Velocity head. The inertia pressure produced by a fluid in being brought

to rest may be equated to the pressure produced by a column of fluid of

density p under gravity action.

Z \gc/

2
V

h _ _ _

2g

2 ft2
v

sec 2
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INERTIA FORCE

This head produced depends only on the velocity and gravity, It could
be termed an inertia head.

INERTIA FORCE. This is the force F required to accelerate a mass m

from 0 to v over a distance L during time t. It may also be defined as a

deceleration force or drag.

F =--a where a =
gc

m(v- 0_ (v__)= _c_ J where L = t

2L
or t =_

v

m v

= Z-=-£-

½(#)v2= L - L

(-VTcg c ) v2

1 m V
2 L

i 2A= I( _ 2

_pv -2 \gv]V A

KE = FL

= L

= _\gc/ = _ v

JOULE. A joule is a metric energy unit having aspects defining heat,

work and energy.
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JOULe"

Conversion factors. (The symbol Jm will be used to define all for_r_s

involving joule or metric units. )

,ooZe)Jm = 1 Nm/ = 1 amp volt sec amp volt sec

( (1 = l watt secJ l = i055 Btu

Joule as a heat unit. The metric system defines the numerical value of

Jrn as 1 compared to a numerical value of J in the engineering system

of 778 (see Mechanical Equivalent of Heat).

(73m= 1 joule J = 78 _i-f_/

1 ft Ibf

_,Tm = = 0. 738
l 3558179 joule joule
• ft Ibf

(Ref. 33, p. 14)

Joule as a work unit. A joule is the work of I newton N acting through

a distance of 1 meter m.

(I joule} = 1 Nm

Joule as an electrical unit. A joule is used to define electrical units such

that one joule of energy is required for the electrical work of moving

one coulomb (= volt sec) of charge through a potential difference of

1 volt.

i joule = i coulomb sec

= 1 amp volt sec

Joule per sec as a watt. The watt is a joule per sec (23,

1 watt = l joule
sec

p. 19).

The following conversion factors are applicable.

(watt_ = ( watt sec) =(iI watt
l=l

("o___ joule amp volt]

\ sec ]
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KINETIC ENERGY

_ (_4_3_u._(_4_3_u_

( 3_00_._(_ w___oc_4_-_u i!-- o_ _u
3. w-_ _r- /

_u_(__ (3_o_1_1 : (3. 413 wa-_ hrJ _] = watt hr]

KINETIC ENERGY. The kinetic energy of a mass moving at a final

velocity v is obtained as the work equal force times distance to

uniformly accelerate the mass.

Proof:

KE=W=FL

\gc !

_m{_-O_
gc\ t ] L where L = Vavgt = (2) t

ort=2 z
V

whe r e

ft lbf =

ft Ibf

(m ibm)(v f--Ll2
sec/

ibm ft
2(32.2 l%--fs_c 2]

(w ibf)(vf--A-tI_sec/
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KNUDSEN NUMBER

Alternate proof.

KE=W=FL

ma
=_ L

gc

-----_ Z

gc

m-_- m V

gc

m

= -- v -_'_Vav_)
gc

m_ _ V

gc

rn 2

gc

KNUDSEN NUMBER. In rarefied-gas dynamics, flow patterns are deter-

mined primarily by the Knudsen Number (4, p. 199; 24, p. 83).

(Knud sen Numbe r_
Kn = \ Dimensionless ]

(Ratio Mean Free Path Distance of Molecular)

(Length Dimension of System)

\L ft]

LEWIS NUMBER. This dimensionless parameter involving diffusion

is encountered in mass transfer. It is also known as the Semenov

Number. It is a redundant dimensionless number in that it is equal to

the basic number ratio Prandtl/Schmidt.

(_ow__mbo4
Le = \Dimensionless]
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MACH NUMBER

_ ft--KT'] lbm F] _r]

\ ft 2 hr F]

Dm Dm (Mass Diffusivity)

-k a (Thermal Diffusivity)

LIMITATIONS. See Sufficiency.

MACH NUMBER. This dimensionless number refers an actual velocity

to a base or reference velocity usually a sound velocity.

(Mach Number_
Ma =\Dimensionle s s]

where v s frequently equals sound or acoustic velocity, ft/sec.

= _/gckRT

= _gck (-_) for a perfect gas

- m

k = specific heat ratio, Cp
Cv

Referred to the last equation for v s it appears that Mach Number is

related to a pressure-density ratio, perhaps an elasticity aspect.
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MACH NUMBER

Ma as a criteria. For compressible fluid flow Mach number represents

a criteria between flow regimes. Below Mach one the flow is subsonic.

Near and at Mach one equal to the velocity of sound the flow is transonic.

Above Mach one the flow is supersonic. Above Mach five the flow is

hype rsonic,

Ma in dimensional analysis. In dimensional analysis where a property

depends on two velocities vl and vz:

Properties = f (.... Vl, v2 .... )

if the result is an expression of dimensionless numbers a (vilv 2) term

will always be obtained where vz will be the velocity of sound if vz in

the original expression is the velocity of sound. However, v_ may be

some other velocity such as ship or object velocity. In that case (vl/vz)

is a velocity ratio. This will be termed Mach number. Thus in

dimensional analysis Mach number is a ratio of velocities in which the

reference velocity may or may not be the velocity of sound depending

on the nature of the problem.

Ma in terms Eu.

2
2 V

(Ma) -
gc kRT

( Ibm_ ft2

i , ¢ 797(_ 7gV9

-k(v2f_pP)-k(Pgc)- k( Plbf_{3ZZf-_]_ " l-b-flbmft_secf]

1

- k(Eu)

MAGNETIC PRANDTL NUMBER. This fluid property resembling the

Prandtl Number has been mentioned in the electromagnetic literature.

Magnetic Prandtl Number)
Pm = \ Dimensionless
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, MAGNETIC REYNOLDS NUMBER

(Rrn)_ (Magnetic Reynolds Number 1

(Re) - (Reynolds Number)

_po-Lv_

(pvL_ -- \ JmP ]
\ Vfgc]

(_p lbf _ (¢ amp _(_flbf sect(32. 2 lbmft_amp2/ \ volt ft] ft -f _J lbf sec2/

(0 ftlbf c')( lbm_•738 amp volt se P f-_]

MAGNETIC REYNOLDS NUMBER. This dimensionless number expresses

the properties of an electromagnetic field.

Magnetic Reynolds Number_
Rm = \ Dimensionless /

\ Jm

(_p lbf _(0_ amp \--::'::=-- L
a_'_p_J volt ft; (ft) (v s-_-c)

ft ibf )0. 738 amp volt sec"

where

&p = magnetic permeability, ibf/amp _

¢ = electric conductivity, amp/volt ft

L = length, ft

v = velocity, ft/sec

Jm = conversion factor = 0. 738 ft lbf/joule = 0. 738 ft Ibf/ampvolt sec

Btu amp volt hr 600

where 1 watt = 1 amp volt.
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MAGNETIC REYNOLDS NUMBER

Rmin terms of Re. Magnetic Reynolds Number Rm is also expressible

in terms of Reynolds Number and two other dimensionless numbers

(Ref. 24, p. 121).

-]

Rm = (Re) (Em 3)(Ha)

[( ibf amp ft )]
- / ft Ibf \

'[/_fl_\ lbf sect/ lbm ft _G-ft _ /t gc lbf Sec2)/

s-TV/(v' secG

lbf .'_/H 2 am__'_ (g lbm ft._p amp2)\ ft _ ] c lbf s_c 2

v.: a-_p_/ o-volt ft)t H f? / (L_ t,

txf ft 2 Jm amp volt sec'

where

Re = Reynolds Number = (pvL_
\_fgc /

2

Era3 = Electromagnetic Number 3 = \ PV 2 ]

(_2 o'H2L2_

Ha = Hartmann Number \ _fJm /

Magnetic Re in terms of current density.

lbf amp ft

Rm: (j ft lbf k '
t m amp volt sec/

= Jm \t/
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MAGNETOHY DRODYNAMICS

(E) (electric field strength, volt/ft) E volt= ratio (magnetic field strength, arnp/ft) - H amp

L = length, ft

v = velocity, ft/sec

p = mass density, Ibm/ft 3

Vp = magnetic permeability, ibf/amp

Jm = conversion constant factor, work to joule electrical units

= 0. 738
ft Ibf

joule
- 0. 738

ft ibf

amp volt sec

gc = conversion constant factor = 32. 2
Ibm ft

ibf sec 2

volt

arn_

ibf

Ibm

sec

F lbf = C

(p lbm f lbffta/( p (Jma 2J

O---a+c-h

0 = a+ 2b - c - 2g - h

-a+ 2b - c - 2g - c + a

_- 2a + 2b - 2c - 2g

1 = -b+ g + h - i

-- -b+ a+b - c+ c - a - i

O=f+i=f- 1

0 = 2b - e - h - 2i

=2b-e-c+a+2

,amp h a 2sec2hb/E volth (L ft)d(v sec/(O_volt ft/ (c am p c ft /eibf ft2 / _H amp/

amp volt sec c Ib-f sec2"/

h = c - a

g=a+b-c

i= -1

f=l

e=2b+a- c+ 2
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MAGNETOHYDRODYNAMICS

where

= \JmtE]

; \JmtE,/kL 7

a_p_) (L 2 ft2)

(o sec,( •738 volt amp sec --_-]

E = electric field intensity, volt/ft

= electric conductivity, amp/volt ft

(_-_2)= electric current density, amp/ft 2

(E volt_(_ amp 1= _'t-"]\ volt ft

MAGNIET OHY DRODY NAMIC DOMAIN. ARDA analysis gives for MHD

Eu = fcn (Rm, Em l,Em2) where Rm = fcn IRe, Era, Ha)

Derivation of MHD domain. For the MHD domain occurring with the

motion of an electrically conducting fluid in an electromagnetic field

(24, p. 119).

E

F = fcn(o-,e,_, L,v,o,_Xp, Jm,gc)

where

F = force on fluid, gas or liquid, Ibf

= electrical permittivity, amp 2 sec2/ibf ft2

= electrical conductivity, amp/volt ft
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MAGNETOHYDRODYNAMICS

ft 0 = -a - 2b + d+ e - 3f +h+ i

= -a - 2b + d + 2b + a - c - 2 - 3 + c - a -

=-a+d-2

(:)cF Ibf = C(_}a(c )b (L)a + 2 (v)2b

{_p)a + b - C(jm)C - a(gc}-i

.Fgc ._ _I__ a v')b(.JmE_ c

1

d = a + 2

+ a - c + 2(p)l

Eu = (Rm)a(Em i)b (Em2) c

This equation applies also to the electromagnetic domain of Eu = i.

This is transformable into an alternate form.

Eu = (Re)- l(Em 3)(Ha) (Em2) (Em3)

Eu = Euler N-m-:]ber din_ensionless

Rm = Magnetic Reynolds Number, dimensionless

Re = Reynolds Number k_fgc]

2

Em3 = Electromagnetic Number 3 = \ Pv 2 J

bp2¢H2 L_{
Ha = Hartmann Number = \_fgcJm/

Ibf sec

_f = viscosity, ft2

w he re
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MECHANICAL EQUIVALENT

MASS DIFFUSIVITY. See under Diffusivity.

MECHANICAL EQUIVALENT OF HEAT. This is a conversion factor

designated as J. An exact numerical value has not been adopted in the

engineering system of units, primarily because of the existence of

several definitions of Btu such as the International steam table IT Btu,

the thermochernical Btu, etc. The numerical value 778 is customarily

used as equivalent to the approximate numerical value obtained by the

conversion factors indicated below (Ref. 33).

J

1 "joule055.04 IT Btu]

(1 3558179• ft Ibf]

= ( 778 ft lbf)Btu

J

Newton m / (14 • 350264488888 joule Btu/\05_ thermochemical

•4482216152605 i-_ ] 0•3048 ft

ft ibf

The numerical values are given to many places in the preceding to

emphasize that while the numerical value is not as exact as i. 00

would be, it is determinable to considerable accuracy.

Thermodynamically J is not reversible, in that mechanical work in

ft ibf can be fully transformed into heat but heat cannot be fully trans-

formed into mechanical energy. For this reason J does not usually

enter into dimensional analysis. On the other hand the acceleration

law as expressed in gc is reversible so that gc does enter into dimen-

sional analysis particularly in fluid flow problems.

The symbol Jmwill be used for the metric conversion factor (33, p.

See Joule•

Jm =I- l i_,,I_-I= 0• 738 ft:ibf
Joul e

•3558179 __xt_x!ftIbf/

14).
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METRIC SYSTEM

METRIC SYSTEM. The Systeme International or SI metric system

adopted by the U. S. Bureau of Standards 1964 as a preferred system,

is outlined as follows, in comparison to the U.S. engineering system.

The SI metric system is also used by other agencies such as the NASA

Marshall Space Flight Center (Ref. 33) which suggests that if other

units are used in reports, the equivalent SI units shall follow in

parenthesis.

Metric prefix conversion factors. Those in typical use are:

10 meters_ = (i06 m_ (i0 decimeters)= (lO._m.)megameter] \Mm ] meter

{i000 meters I (I03 m I (100 cent[meters_ = (10_cm)_ k--_lom----_er "] = \km ] meter /

(I000 mm_iti2eters)= (100Omm)

(10'm crosecon S se on 

(109oanosecondS)=second• (nsOC)m
Metric systen_ advantages. The SI rnetric system possesses advantages

in that the numerical values of gc and I are unity rather than larger

numerals as in the equivalent engineering system. Thus

( ) (gc = 1 newtonkSmmsec 2 Versus gc = 32.2 Ib-f se_ f]

J : (1 newt°rim)joule
Ver sus

Also the SI metric system uses multiples of ten rather than varied

multipliers. For example:

(i0 mm] .Versus 2
cm]

i000 -_) Versus
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METRIC SYSTEM

Thus, some calculations will be numerically simpler in the SI metric
system. No simplification is achieved in equations using the accelera-
tion of gravity. Compare:

Versus

Equations such as V e = (escape velocity) = 2X_gRo involve a similar
amount of calculation in either system.

Metric disadvantage of newton as a weight or force unit. The SI metric

system possesses some disadvantages in specifying the newton as the

force or weight unit as compared to the ibf downward (equal to Ibweight)

in the engineering system. The SI metric system recognizes the newton

as the only force unit and does not use kgf as a force unit. In ordinary

experience 1 ibf is measured as the gravity force on l Ibm on the surface

of the earth. Ordinarily the newton is not actually measured by accele-

rating 1 kg at a rate of 1 meter per sec in accordance with its definition.

Thus, it is more difficult to recognize that 1 kg of mass exerts a force

downward of 9.81 newtons weight.

Thus, the SI system is disadvantageous as compared to the engineering

system in specifying the weight of a mass, in the decimal numbers are

required as compared to the unity relation between lbweight and Ibmass;

that is

1 kg (mass) weighs 9.81 newtons force downward

l ibm weighs 1 ibf downward = 1 ibweight

Thus, a conversion factor, not a multiple of i0, is required in the SI

metric system in any problem involving weights.

The conversion factors to newtons from engineering units are:

1 =_4.45 newton_ibf!

32.2 ibm ft h (7.83 ibm ft_
gc = \'4.45 newto-----_sec f] = \ne_-to_ se-_]
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METRIC SYSTEM

Metric system weight. Force and weight relations may be summarized

in the table.

Table Force and Weight in Metric and Engineering System

Metric SI System Engineering

Force

to accelerate

Weight

on surface

of earth

w = g

Summarized

force and

mass relation-

ships on surface

of earth

F newtons =

m
(mkgm) la sec 2)

i i kgm m )newton sec 2

w newtons =

( m)i kgm
newton sec 2

1 kgm (= 2.21 Ibm) exerts

9.81 newtons force downward

or 1 kg weighs 9.81 newtons

F ibf =

32"2\Ibf sec 2)

w ibf =

Ibm ft
32.2 l-_ s_c 2 ]

1 lbm exerts

1 lbf (= 4.45 newtons}

downward, or

1 ibm weighs 1 lbf

As an example, for the Saturn I space vehicle rocket-booster, the

information shown in Table would appear simpler expressed in

engineering units.

Table Saturn I Launch Vehicle

Mass of Vehicle

Liftoff Weight

Thrust

Available

Acceleration

Force

454,000 kg

4,450, 000 newtons

= 4.45 meganewtons

= 4.45 MN

6.70 MN

2.25 MN

l, 000, 000 Ibm

l, 000, 000 Ibw

= 1,000,000 lbf

l, 500,000 Ibf

500,000 ibf
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METRIC SYSTEM

Metric system potential energy. As another example in which

calculation in the SI metric system appears more complex is in the

work required to raise a mass a height.

Example: Calculate the work required to raise i00 ibw (45.4 kg) a

height of 20 ft (6. i0 m).

Engineering Units: PE = wh = (i00 ibf)(20 ft) = 2,000 ft ibf Ans.

Metric Units: PE =wh = (mh)(g-_c)

= (45.4 kg)(6.10 m)

9.81 s-_c 2)

1 kg m )newton see 2

= Z7Z0 newton meters Arts .

Check:

(Z7Z0 newton meters) = (2720 nm) '1.36 Nm] = Z000 ft Ibf

The c°nversi°nfact°r (1 36newt°nmeter) has been taken fr°m"ft lbf

table of conversion factors following.

the

Metric versus engineering units. The scientist (physicist) uses the

metric system whereas the practicing engineer uses the engineering

system. As with languages such as English and German, the medium

of communication that is most familiar is used. Although one system

may be preferred by an individual, it would appear desirable to under-

stand and work in either system. Important conversion factors are

summarized in the following section.
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METRIC SYSTEM

Conversion factors metric to English. Factors in common use in heat and mechanics

are given in the following table.

Table Metric and Engineering Unit Conversion Factors

Phys ical

Property

length

volume

velocity

mas s

mass_

time /

time

Preferred

Metric

SI Unit

m = meters

IT1 _

meter

sec

kg = kilograms

= kgm

kg
sec

s = seconds

Other Metric Units

of Conversion

Factor

106 microns _

meter /

(i0 I° angstroms_meter ]

100 cm

m

_IO00 liters)m 3

i000 _cc
liter )

/3.00 x 108 _meter_

sec

\velocity of light/

(1000 grams )\ kg

Engine e ring

Units

ft

ft
sec

9.836 x 108 f____t_sec

\_el-_cit_ of light/

ibm

ibm

sec

sec

Conversion

Factors

meter

1. 609 km /

3.79 m 3]'00-0 gal )

0. 134 ft3)gal

-3. Z8 t ]
sec

I

((rne:__:r)

: 0. 447
sec

miles)hr
_I

2.21 ibm 1J

3Z. 2 ibm_

slugmass]

60 secmini
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METRIC SYSTEM

Table Metric and Engineering Unit Conversion Factors (Cont.)

Physical
Property

temp

force

power

heat

/
ma s s/

heat /
area/

Preferred

Metric

SI Unit

K = Kelvin

N = newton

W = watt

J = joule

joule

sec

joule

kgm

joule
m 2

Other Metric Units

of Conversion

Factor

(K = C + 273)

10 s dyne_newton /

81 newton\

(9>g f777r_e /
o

I

.i000 watts_-kw I

I_lJ °uleN
see i

watt )

4187 joule)k cal

107 erg
joule )

(1 sec j
watt /

Engineering

Units

F

Ibf

hp for (mechanical

work}

watt for elec power

Also see

heat_
7F-me/

Btu

heat rate

heat flux

Conversion

Factors

(F abs = R

= F + 460)

4.45 newton_tg}- /

.4.45 N)- lbf

746 watt

hp

ft lbf
0.738 --

sec

watt

1055 joule)Btu

17.6 watt

Bt___5_u_
mini

3413 "_r
.

kw

1 Btu
ibm */
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METRIC SYSTEM

Physical
Property

heat ]mass time

heat

area heat temp)tirv_e

acceleration

pressure

atm press

Table Metric and Engineering Unit Conversion Factors (Cont.)

Preferred

Metric

SI Unit

joule

kgm K

joule

m 2 sec

j oule
m sec K

m

sec 2

kilonewton

m 2

kN

-- m 2

i 1 3 kN_
.0 . _-_

_im ]

Other Metric Units

of Conversion

Factor

/lJ°_e_
I k_ K'I

k calj
_lkgC!

watt
l--

m 2

!i joule
m 2 sec

newton ]
1 m2 /

I. 325 newt_______onsh
i01, _ meter2

atm /

1 013,246
' cm 2

arm

7 60 mm Hg )atm

Engineering

Units

specific heat

heat flux rate

conductivity

ft

sec

ibf

psi - in2

ibf

psi - in?

Conversion

Factors

4184 kg C _

1 Btu i
FCA_F /

3.16 wat----!t /

1112

Btu

i ft2 hr

51_. oo0 ft2-_r

- _-t_-- l
l int se---_ /

519 joule
m sec K

: \ft 2 sec F

7

14.7 psi 1
atm /

760 ton)atm

30 in. Hg)atm
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METRIC SYSTEM

Physical
Property

viscosity

work

mass

density

gc

mole volume

Table Metric and Engineering Unit Conversion Factors (Cont.)

Preferred

Metric

SI Unit

newton sec

meter 2

newton meter

: Nm

1 kg m
newton sec 2

m
9.81 --

sec 2

accurately

9.80665

newton m
1

joule

22.4 meter a
at

mole

OC and 1 atm

with molecular

weight in kgm
mole

known as kgm

mole

Other Metric Units

of Conversion

Factor

_oise

newto______nnsec 1

1" meter2 ]

1 newton meter_

jJe I\

joule l

'1 erg ]
dyne cm _

k

i008 kgm
m 3

1 gm mass)cm a

kgm m
9.81 kgf sec 2]

gZ.4 liters
at OC

mole

and 1 arm with

molecular weight

in grams mass
mole

known as gm

mole

Engineering

Units

force x distance

gc conversion

factor

gravity
acceleration

mech equiv

heat

Conversion

Factors

ibf sec

47.9 ft=

u(newton sec_

meter2 L

.i.36 newton meter )ft Ibf

accurately

1.3558179

16 0z kgm
• m 3

ibm_

ft a }

ibm ft
3Z.2

ibf sec =

ft
32.2 --

sec 2

ft ibf
778 ---

Btu

358 fta
at 3Z F and

mole

14.7 psia with

molecular weight

ibm

in mole known as

ibm mole
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MODULUS OF ELASTICITY

Table Metric and Engineering Unit Conversion Factors (Cont.)

Physical

Property

Universal

Gas Constant

Preferred

Metric

SI Unit

8314 joule_
-"mole K ]

(8314 newtonm)moleK

with molecular

weight kgm
mole

Other Metric Units

of Conversion

Factor

ALL

(82 armmole K ]

with molecular

weight gr mass
mole

Engineering

Units

(win) R

Conver sion

Factors

(1545moleftlbf)

with molecular

ibn_

weight mole

MODEL THEORY. See Similarity

MODULUS OF ELASTICITY. Murphy (28, p. 144) defines the resistance of any

substance to compressibility as the change in pressure divided by an index to the

corresponding change in size. Thus for solids under axial loading the measure

of the change in size is (AL/L).

For solids

E : Young's modulus of elasticity

Ap

For gases and liquids

The measure of the change in size is (A___)

E = bulk modulus of elasticity

/xp

In dimensional analysis problems E appears in the Cauchy Number.
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NEWTON FORCE

NEWTON FORCE. The newton N is a metric force unit that can be

expressed in mass units or in heat-work units.

Conversion factors.

k_m m
gc : 1 N sec 2

Expresses N i

ma s s unit s

Nm Nm

Jm : l'joule - 1 amp volt sec

l : 4.448ZZ16152605 _ (Ref. 33, p. 9)
ibf

ft Ibf
J : 778 "--

Btu

Nrn (Ref. 33 p. 14)
1 = 1.3558179 ft Ibf

Newton in acceleration constant. The newton N is a force unit expressible

in terms of mass by the newton law.

m
F =ha

gc

F newtons =
(m k@mass) m

m
newton see2]

where gc = a conversion constant or factor with numerical and units value.

kgm m [Numerical value selected

= I N sec 2 L as 1 in metric system

Newtons expressed in joules. A joule is a metric energy unit defined

as the work of 1 newton N acting through a distance of i meter m

(i joule) = I Nm

i N = I joule
rn
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NEWTON FORCE

Newton force expressed in mass units. The newton law is written in the

preceding form as a unit-consistent equation in which the units on both

sides of the equation must be the same which is the practice followed in

the ARDA dimensional analysis procedure of this text. This equation

reduces to the units of newtons on both sides of the equation which indi-

cates that a newton is the fundamental force unit. It is expressible in

other terms as is usually done by application of the F = ma equation but

if force is a fundamental property it is physically not mass, length or

time and any expression in such terms of mass, length or time is a

mathematical procedure rather than a physical concept. Simply stated

force is a "push" and is not a quantity of matter, length or time.

Newton as a derived force unit. If the newton is treated as a derived unit

expressible in terms of mass, length and time units which can be done

only by the mathematical law F = n_a, the gc conversion factor is omitted

to give:

F newtons = (m kgmass)(a fs_c2 )

L meter]N = (m kg) _{ _/

= MLT -2 kg m sec-1

numerical units

value description

The use of the newton thus defined as a derived mathematical force unit

having the numerical value and units of one kg m sec -I is the heart of the

metric system of units. From a dimensional analysis standpoint it is

mathematically excellent but to treat a force not fundamentally as a push

but in terms of a qunatity of matter renders the interpretation of physical

phenomena in dimensional analysis difficult. To avoid this and thus

sin_plify concepts the ARDA dimensional analysis procedure is to consider

force as fundamental. If so force must be clearly designated as such

which requires some such notation as Ibf (to distinguish it from Ibm).

If this notation is adopted there is little advantage in selecting some

designation other than lbf simply because one lbf has a very readily

understood physical concept as the force exerted by one ibm where the

acceleration field has a value of 32.2 ft/sec 2. On the surface of the earth

where numerical value of g is essentially equal to the numerical value of

gc" this Ibforce is the downward push or ibweight exerted by l ibmass of

matter.
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NEWTON LAW
p

NEWTON LAW. This is a universally true observed experimental law

not requiring proof.

F = Kma

The constant may be written with the gc symbol to give

If the ARDAprinciple is accepted that every equation must be unit

consistent so that the units on the left-hand side of the equation must

equal the units on the right-hand side of the equation gc must have nmner-
ical and dimensional value to make this true.

Flbm =
{m lbm)

(gc lbm ft_ (a s@c2)
lbf sec 2]

In the engineering system gc has the numerical value of 32.2. In the

metric system the sizes of the other units are selected so that gc has a

numerical value of unity.

This law can be written as a dimensionless number.

 mlbm,(a )/ma
(g Ibfft )\F gc/ (F lbf) c lbm sec 2

This dimensionless number may be considered to be part of every equation

expressing physical phenomena involving mass acceleration, however, it

need not be included as it is always true because the numerical value of gc

is a constant and thus is not a variable (like g ft/sec = for example) that

can affect the results.

Newtons law in system of units. Newtons law is

F =Cma

ma

gc

If this equation is considered to be a relation between the properties force,

mass and acceleration, (length per time 2) where the properties have no

fixed size the value of C or gc must necessarily be a numerical unity.
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, NUCLEATION DOMAIN
F = mLt -2

This is done in a three unit system where F is defined in terms of mLt
or m in terms of FLt.

However if unit values of properties are established, the symbol gc has

numerical and units value to make a unit consistent equation. The

numerical value of gc need not be unity.

F lbm=

I m ibm \

NOTATION. In previous dimensional analysis procedures the symbol

M represents the property of the entire amount of mass. In the ARDA

method, m will be used to represent both the entire amount of mass

rn Ibm and the numerical value m in m Ibm. For simplicity the engi-

neering system of units will be used with the different properties

rn lbm (Ib mass) and F ibf (Ib force) clearly distinguished.

NUCLEATION DOMAIN. ARDA analysis gives-the form

/TA

= fcn (Ja)(Re)(Fr)(Eu)(We)(Nu)b_)(NU)h (Re) h (Pr) L

e Ym

ARDA derivation of nucleation domain. The work of Steele (12, p. 30)

is of interest in defining the nucleation rate (I_/A) at which bubbles form

on a surface in boiling heat transfer.

(AN seclft2) = C(p lbm_aft3 ] (v\ sec/ft _b(D ft)C(AT Fabs)d(hfg Btu_el___m]

(gcibmft_f/ ibf_sec._g _Bt_u._h ft _klb"fs_c2] _f ft2 ] (khrftFabs](g sec2]

ft 2 ] (Cp Btu )n(T lbf_P(q Btu _rIbm Fabs -_-] \A f_7_r] (L ft)

sec_W z
Btu _v (3600 (e ft)X(ym ft)Y#N s@c)hc h'r f_-5 Fabs'] hr ]

where the usual notation is supplemented by:

e = height of surface roughness, ft

Ym = amplitude of vibration of fluid, ft

N = frequency, i/sec

hfg = enthalpy of evaporation, Btu/Ibm
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NUC LEATION DOMAIN

ft

sec

ibm

ibf

Btu

hr

Fab s

-Z = -3a+b+ c + f - Zg - h+ k - 2m - p - 2r + s - 2v + x+ y

= (-3w + 3g + 3m + 3p) + (i - g - 2m - Zp - Zk + w + z) + c

+ (g + rn + p) - 2g + (+r + v + w) + k - 2m - p . 2r + s

-2v+x+y

-3 +w-x- z -p+k+ r+v- s-y+g =c

-I = -b - Zf + g - Zk + w - z

= -b + (-2g - 2m - 2p) + g - Zk + w - z

O=a- e+f-n

=a- e+g+rn+p-w+e

O=-f+g+m+p

0 =e+h+ n+ r+v

=e - r-v-w+n+ r+v

O=-h- r-v-w

O=d-h-n-v

=d+ r+v+w-w+ e - v

b = I g - 2m - 2p

- 2k+w+ z

a=w-g -m-p

f=g÷m+p

d -- -r - e

P(v) I
= C p)W - g - m - - g - Zm - Zp - 2k + w + z

D-3 -r- e+w - x - z - p+ k+ r+ v - s - y+ g(AT)

(hfg)e(gc)g + rn + p(_f)g(k)-i - v - W(g)k(p)m(cp)W -

(T) p (q)r (L) s(hc)V (3600)W(e)X(ym)Y (N)_

e
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NUCLEATION RATE

D
v

s

(Nu) L

The less frequently appearing terms are:

Yrnt = vibration numberDc

Sh= (-_-_ =Strouhal Number

=_vDp _= Reynolds Number flowing liquid

(ReL) gc/

(D_c) = shape factor

Omitting the less frequent terms:

D 3 )e (Re)bg (Fr)k (Eu)m (We) p (Nu)r (Nu)V (pr)W7 = C(Ja

NUCLEATION RATE. The nucleation rate (Iil/A) (12, p. 30) used in the

Nucleation Domain, is the number of bubbles formed per sec per sq ft

of surface, in boiling heat transfer. Its units are therefore,

sec ft2

It would be possible to use a single symbol for this quantity but to avoid

proliferation of symbols and to use a symbol more easily recognized the

N is used to signify a number, the dot a rate per sec in accordance to an

increasingly accepted modern usage and A represents area.
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NUSSE LT NUMBER

NUSSELT NUMBER. This dimensionless parameter introduces

the effect of surface conductance in heat transfer.

Nu Unit s

(NusselfNumber 
Nu = \ Dimensionless /

Nu =

Btu .)(Dft)h hr ft2 F

k Btu ft_Tt2F )

Redundant Forms

Nu = (St)(Pe) = (St)(Pr)(Re)

Nusselt Number as energy ratio. The Nusselt and Stanton Numbers can

be interpreted as similar energy ratios by multiplying numerator and

denominator by AT (4, p. 201). This is dimensionally valid, although

the AT are different.

h hD
St _ Nu =

3600 pCp V k

hAT

(pCpAT) 3600 v

(total heat transfer)

(convective heat transfer)

(total heat transfer)

(conductive heat transfer)

Nu as a heat ratio. For fluid flowing in a tube:

Nu = (overall heat transfer fluid to wall)
(conductance through boundary layer)

Btu )h hr ft2 F (A ft2 wall surface)(AT F fluid temperature drop)

fluid to x_,all

hr ft2 FJ(A ft2 \ boundary l-_ye r/

hL (AT temperature drop fluid)

k (AT fluid to wall)
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ORIFICE FLOW

In practice D is used instead of L.

Also,

Btu Q
(_ _ = hAAT or h _ AAT

Thus,

Nu -

hL QL (Q BtU_hr] (L ft)

k - kAAT Btu ft
h_ _2 _'}(A ft)(AT fluid temperature drop)

Nu from dimensional analysis. Nusselt Number is a measure of heat

transfer properties and depends on the heat transfer coefficient h, which

is related to the boundary layer thickness L (related to the diameter D

if flow is in a tube) and the thermal conductivity k across the boundary

layer. It is independent of main stream velocity.

a c

Nu = C h hr ft2 F (L k hr ft2 F

F

Btu

hr

0 -- -a - c

O=a+c

O=-a- c

e -- -a

ft 0 = -Za + b - c b = Za + c = Za - a = a

Nu = C(h)a(L)a(k) -a

=c =-_-

where both C and a can be unity. Also D is usually used for L.

ORIFICE FLOW. Although related, it is possible to consider flow through

an orifice as produced by gravity and as produced by pressure.

Flow through orifice produced by gravity. By dimensional analysis, for

orifice of diameter D = L:

(V ft3 ] C(D ft)a (g ft _bsec/ = sec2/
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ORIFICE FLOW

1
se___ic - 1 = -2b b =

1 5
ft 3 =a+ b = a+-- a =--
-- 2 Z

5 !

fr = c (D ft) 2 (g)2

C = DS/2 gi/2 = L5/2 gi/2

2 ._..2 (Av)2 L 4 v 2 v 2

C ='_=_g = DSg - _-=_g - gL
_Fr

By the associative method, if flow is produced by gravity, Fr is involved.

C=Fr_
• 2 2L4 (vA)2 fz2v v

gL - gL s gL s gL s

e Vm

To determine scale factors v =-- ,
v

etc.

5

For constant g,the gravity flow is proportional to _ power of L = D. As

discussed under Scale Factors the proportionality also applies to scale

factors, or

5

fT,= (L,) _

! s_

Av L 2 C g 2 2= = v = g

! !
2 2

v=Cg L
I

1

Foreonstant g the velocity v is proportional to'_power of Z, or v'= (Z')

Pgc

(Fr) = C = Pv 2

_o_cons_antganddensities(_), Pis_ro_,ortiona'toL.orP'--_L').
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ORIFICE FLOW

(Fr) = C ---
Fgc

pL 2 v 2

2 wF : C -p-- L2v : C--L2CgL
c g

Forconstantg and densities (v),FisproportionaltoL, or F' = (L') s.

A more formalized general treatment is given under Similarity Dimen-

sionless Number Criteria.

Flow throush orifice produced by pressure. By dimensional analysis:

( Ibm_a IP ibf_b (g Ibm_ ft _d

ft3
#

- C p ft3/ \ ft2/ (D ft) c lbf sec2/see C

l
sec -l = -2d d =--

Z

1 1
ibf 0 =b - d=b --- b =--

Z 2

1 i
ibm 0 = a + d = a +-- a = - --

2 Z

ft 3 = -3a - 2b+ c + d

3 1
=--- I + c +-- c = Z

2 2

, , = ( } D2_Pgc_r : C(p)- _ (P)_ (D) gc) : C
P

By association,

/

#: CD_ c'

if flow is produced by a pressure, Eu is involved.

Eu is in terms%r where D = L.

A general treatment is given under Similarity Dimensionless Number Criteria.
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OSCILLATING WING

OSCILLATING ELASTIC WING IN MOVING FLUID. Sedov (3, p. 60)

gives

f

Ibf_ b Ibf_ c (p ibm_e ft(N-_elc) = C(L ft)a(E f-_] (S f-_] (m ibm) d ft3 ] (v-_ec)

g ibm ft ) gc Ibf sec i

where E and S are moduli of elasticity and shear.

ibf 0 =b+ c - g b --g - c

Ibm 0 = (l + e + _ e = -d - g

sec -I =-f - Zg f = ] - 2g

ft 0 =a- 2b - Zc - 3e + f+ g

= a - 2g + Zc - Zc + 3d + 3g + 1 - 2g + g

a = -3d - 1

N = CL -3d - leg- CGCmdp-d- gv i- 2g(gc_

{Egc_g d c

d -c

,sh,.
This result was also obtained as a special case under Fluids.
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, PECLET NUMBER

PECLET NU]V[BER. This dimensionless number occurs in convection heat

transfer. It appears redundant in that it is a product of the more basic

dimensionless numbers Re and Pr.

Units

(Pe) = Peclet Number, dimensionless

3600 CppvD

k

3600 sec_, %T)(Cp
Btu

ibm F_(p-_f-](vlbm' __ft _(D ft)
sec/

otu)hr ft F

= (Re)(mr)

=
Pe = (Re)(Pr)

Pe as ratio of heats. Some authors (28, p. 194) have defined Peclet

Number as a ratio of heat available to heat transfer. If so, Pe is a

more complex ratio. Consider fluid flowing in a tube of length L

having a boundary layer of thickness t.

Area A

"_------- L

t Boundary layer

Tf Z
Perimeter P

¢
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PEC LET NUMBER

(Pe) = (heat given up by fluid in section L, Btu/sec)
(heat transfer across boundary layer in section L, Btu/sec)

CppvA (AT fluid)
PLk (AT fluid to wall)

Btu \/ Ibm_/ ft _/_D 2 __

l \ nr_

[ (3600_rC)( t ft)

(AT fluid)

i (AT fluid to wall)

36 AT temperature drop fluid
00(" I_ length pipe )

% thicknessboundary1_yer)

Nu as Pe/Re. If Pe is a measure of heat transfer as a function of flow

turbulence Re, the ratio is of significance.

Pe
Nu = --

Re

3600))

\_f gc]
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PI THEOREM

Pi theorem details. The Buckingham pi theorem and procedure is

classical in dimensional analysis (30, p. 57). The pi procedure is

somewhat obscure and indirect and has retarded the free use of dimen-

sional analysis. For historical purposes it is given here and illustrated

by an example. (The modernized ARDA dimensional analysis procedure

used in the present text differs in several respects and the points of

difference are pointed out in parenthesis).

Pf theorem procedure.

1. Any physical problem where expressed in terms of n physical

quantities q such as 0 = f(q q2 q3 q4 "i....) may be replaced by an

equation 0 --f(Tr, Tr2 Tr3 .... i or C(Tra)(Trb)(ivc).... where Tr represents a

dimensionless number.

2. Usual pi procedure is to express each physical quantity in terms

of three basic dimensions with a fourth defined by newtons law F = MA =

MLT -_ where A is acceleration LT -2 and the constant before the M is taken

as unity. Two systems are in vogue, one is the technical system using

FLT withM = FL -I T 2, the second is the absolute system with MET and

F = MLT -2. (In ARDA procedure an indefinite number of basic physical

properties is used as may be convenient such as Ibm, ibf, it, sec, Btu,

amp. Where the physical process involves a free acceleration or decel-

eration of mases as a result of action of forces the gc conversion factor is

included. If this is a free conversion of work energy to heat energy

inclusive of the conversion factor, J may be required.)

3. For n physical quantities and usually a number k of basic

properties of k = 3 for M, L and T or k = 4 if an additional basic elec-

trical property is included to take care of electrical properties, there

will be a number of _r terms equal to (n - k). (In ARDA procedures the

result of the procedure determines the number of dimensionless numbers.)

4. Select a number k of the physical quantities, none dimensionless

and no two having the same basic dimensions, such that all of fundamental

basic dimensions are included in at least one of the physical quantities.

5. The first Tr term is expressed as the product of the chosen

quantities, each to an unknown exponent, and one other quantity to a known

power, usually taken as one.

6. Retain the quantities selected in (4) as repeating variables and

choose one of the remaining variables to establish the next iv term. Repeat

this procedure for successive Trterms.
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PI THEOREM

PI THEOREM. Use of the pi theorem or system limits the value of the

dimensiona] analysis attack and it is suggested that it is not needed.

The pi theorem postulates a definite number of basic dimensions, which

is an undesirable limitation.

The use of pi symbols to represent definite dimensionless numbers,

most of which have well-known names, such as Re, Pr, Nu, is also

an unnecessary duplication.

Where there are many variables, use of pi-theorem procedures results

in many pi values (dimensionless numbers) which are redundant in that

basic dimensionless numbers may occur in many pi values. It would seem

to be desirable that a basic dimensionless number should appear only once

in a _iw, n equation expressing phenomena of a _ivcn configuration.

In the many examples of dimensional analysis given in this book the pi

theorem is not used.

Buckinghampi theorem. The theorem states (29, g8. p. 36) that the

number of dimensionless and independent terms required to express a

relationship is equal to the number of quantities {physicalproperties

such as bt, p, etc. involved minus the number of dimensions (lbm, ft,

etc.) in which those quantities may be measured. The term or 7r is

applied to a dimensionless number. For example if F = f(g,v,t,m,D,p,bt)

there are eight physical properties. If these are expressed in terms of

L,m and t (lbf, Ibm and sec) there are three dimensions. There must

be 8 - 3 = 5 dimensionless properties involved.

In the ARDA procedures gc must be also included, or L : f(g,v,t,m,

D,p, g,gc) to give nine physical properties or relationships in terms of

L, m, F and t (Ibf, ibm, ibf and sec) to give 9 - 4 = 5 dimensionless

properties.

A more detailed discussion of the formulation and use of the pi theorem

follows.
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PI THEOREM

7. For each _ term solve for the unknown exponents by dimen-
sional analysis. (In AI_DA procedure omit previous steps and solve
directly. )

8. There are a number of helpful relationships that are true for
both the pi and ARDA procedures.

(a) If a quantity is dimensionless, it may be written as a IT
term (or a dimensionless number) without going through the foregoing
procedure.

(b) If any two physical quantities have the same dimensions,
their ratio will beone of the _ terms (or a dimensionless number). For
example (L/D) is dimensionless.

(c) Any Trterm may be replaced by any + or - power of that
term. Example Tr-m may be replaced by Tra, etc.

(d) Any _ term may be multiplied by a numerical constant
because the C term preceding the Trexpression represents any unknown
numerical constant.

(e) Any ITterm may be expressed as a function of other Trterms.
(This should be done with caution as some dinnensionless numbers are
basic and if replaced may be redundant in that the same basic dimen-
sioniess number may be used more than once.)

As an example consider the drag domain for drag F per
unit area A on a body.

The physical quantities with their dimensions in FLT units are

= area=FL -2

T = surface tension = FL -I

g = gravity = LT -2

_f = viscosity = FL -2 T

L = length = L

v = velocity = LT -I

D = dian_eter : L

p : density : ME -3 : FL -4 T 2
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PI THEOREk4

There are 8 physical quantities and 3 basic units thus (8 - 3) or 5
_r-terms. Choosing diameter D, velocity v, and density p as the
repeating variables with unknown exponents the 7rI contains D,v,p and
F/A, _r2 contains D,v,p and tl etc. The ITterms are, therefore,

_rI = (za)(L b T-b)(F c L -4c TZC)(FL-2 )

7r= = (La)(L b T-b)(F c g -4c T2C)( FL- i)

Tr3 = (La)(z b T-b)(F c L -4c TZC)(LT -Z)

Tr4 = (La}{L b T-b)(F c L -4c q_2C}{FL-2 T}

w5 : (L) written directly.

Evaluating exponents for IT1

For F

For T

For L

0= c+ 1 c=-i

0 = -b + 2c = -b - 2 b = -2

0=a+b-4c- 2 =a- 2+4- 2

D O v-2 p-1{_h FTFI =
kAl - pv 2 -

Euler Number Eu

(ARDA notation requires agc

Similarly after some work.

a=0

in these dimensionless numbers)

/T\

7r2 = [pv--_)= Weber Number-1 =We-1

_r3 =(Dg)=Froudev2 Number-1 = Fr -I

7r4 = (-P---)pvD=Reynolds Number-' = Re-'

rr5 = = Shape Number

The re suit is

f(Eu, We, Fr, Re, Z) = 0
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PRANDT L NUMBER

ARDA Procedure. The same problem (including gc) is

(gc ibm ft ._g (p lbm_ h
lbf sec 2] _ ft 3 }

lbf 1 :a+c -g

Ibm

sec

g:a+c- i

h:-a-c+ 1

e : -2b - c - 2a + 2

1 + 3a + 3c - 3

f =-a+b- c- d

c - Za + 2 -a+b-c-d
(D)

ft

0 :g+h h:-g

0 : -Zb + c - e - 2g

= -2b + c - e - 2a - 2c + 2

-2 : -a + b - Zc _ d + c + f + g - 3h

: -a+ b - Zc + d - Zb - c - 2a + Z+ f + a+ c -

:a-b+c+d-Z+f

(F) :C(T)a(g)b(_f)C(L)d(v)-Zb -

(gc)a + c - i (p)-a -c + 1

d
_Av_J: c\Tw-Sj _v_j \p_-VS-)\_/

Eu : f(We, Fr, Re, L)

POISEUILLE EQUATION. See under Hydraulic Formulas.

POTENTIAL ENERGY. This energy in ft lbf is possessed by a weight

w at an elevation H.

/ \g sec 2

PE = wlbf Hft : (wH)ft lbf : (mH) -g-ft lbf : (m lbmhft)l- "'l_--m--m ft[}

gc kgc ]%77_g

PRANDTL NUMBER. Prandtl number contains Cpgf and k, thus is known
as the physical properties number.

(Pr) = (Prandtl Number_
\ Dimensionless ]

Cp_fgc (3600)

k
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PRESSURIZATION DOMAIN

(Pr) -
.(Cp Btu "_(Vf lbf sec](32 Z ibm ft _{3600 sec__g-Jr),, ft_ )\ • _;_)\ -_-7)

(,_Btuft
k

k

cp Btu k/ Lbml_m "F-)t_m ft hr ]

_ 77_7_)

T>r = Approx[rnately 0. 7Z for air. This value may also be used

for flue- and exhaust-gases resulting from combustion of

fuels vAth air. This value may also be used for diatomic-

gases such as N 2, 02 , H 2, CO.

= Approximately I. 02 for low-pressure steam. For effect of

pressure and temperature see values for high pressure steam.

= Approximately 0. 78 for ammonia.

= Approximately 1"9 -45CVlcp_ for gases.

(Proof not given here. )

PRESSURE. See Surface Tension Pressure. See Velocity Pressure.

PRESSURIZATION DOMAIN. ARDA analysis gives:

T
= fcn (Pn i,Pn Z,Pn 3,Re, Fr, Pr, Nu)

Tg

Derivation of pressurization domain. The pressurization of liquid propellant

tanks by a gas has been analyzed (Nein, 7 and 8) by Mower and Hanson (26)

whose analysis follows. The following specialized notation is employed in

addition to the usual notation.

T =(T m - TL)= final gas temperature above liquid temperature, F

Tg =(To - TL)= pi'essurant gas ten_perature above liquid

temperature

T m = final mean gas temperature, F

T o = initial pressurant gas temperature. F
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.- PRESSURIZATION DOMAIN

mole

F abs

ft

sec

ibm

Ibf

Btu

T L = liquid temperature, F

AV =(V 2 - Vl)= volume increase of tank during pressurization, ft 3

v o = initial pressurant gas velocity, ft/hr

(T °F)= C (TgFabs)a(D ft)b(Av ft')c( vo sec/ft_d(p Ibm_efta / (t sec) f

(_ ( ( lbf. sec._ j
R ft Ibf _g Ibm ft __h_m_ ibm ._i _f

mole F abs/ gc Ibf sec=/ \Mmole/ ft2 /

sec ft F abs P Ibm Fabs sec2/

/h Btu tnc sec ft 2 F abs

0 = -g - i g = -i

1 =a-g-k-f-n

= a + i(+f + n) - f - n a = 1 - i

0 =b + 3c + d - 3e + g + h - 2j - k + m - gn

= b + 3c +(f - j - Zm + 2i + _) + (-3_ + 3j)

- i + (j - i) - 2j + (_ + n) + m - 2n

=b+ 3c+ f+ j -m-f -n

0 = -d+ f - 2h+ j - k - 2m - n

= -d + f + (-2j + 2i) + j + (_ + n)

-2m-n

0=e+h+i-_

=e+ (j - i)+ i -_

O=g -h+j

=-i-h+j

O=k+_ +n

b = -3c - f - j + m

+_ +n

d=f- j - 2m+ 2i+f

e=f -j
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PRESSURIZATION DOMAIN

T = C(Tg) 1 - i(D)-3c - f - j + m + f + n(AV)C(v)f - j - 2m + 2i +

(p)' - J(t)f(_ R)-i(gc)J- i(_)i(_f) j (k)-'-n(Cp) '(g)m(hc)n

(T_) = C( v2--] i{AV_c{vt]f{gc_f_j{ m _m/DvpCp_f(m__c) ngcTgR] <--DY] <D-] \p---_-v]<v--_] \ k ]

= C(Pn i)i (Pn Z)c (Pn 3)f (Re) -j (Fr) -m (St)-f (Nu) n

-1 (Pr)(Re)
where (St) - Nu

T_ = C(Pn l)a(pn 2)b (Pn 3)c (Re) d (Fr) e (Pr) f (Nu) g

Tg

where exponents have been redesignated.

Pn3 designate pressurization numbers 1,

less numbers do not have formal names.

The symbols Pnl, Pn2,

Z,3;in that these dimension-

Nein and Thompson (8) using

T =f(J, gc' rnM ' k, bfgc' Cp, R, T O , T L, t, V, A, h, T a,

Cpw, Pw, Lw, P, V1, £r, Ao )

where

= (_fgc)

M) = molecular weight, Ibmole

Ta = ambient temperature outside tank, F

fta
£r = liquid drain rate,

see

A o = inlet pipe area, ft2

V I = initial volume

w signifies wall
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PROPELLOR DOMAIN

Obtain (8, p.

©

Using equations (not given) for properties Ix,

nitrogen the preceding may be modified (8, p. 13,

be viewed as a rather compiex empirical relation.

IO):

a b c

m d e p\f)
fg crff-CCgwPw d k _f'gc' r' / _.f' gc' (_-K) g

i

(Ta L)h (A_fgc r )

k and £r for liquid oxygen or

7, p. 2) to what must

T

To f(To,r,V,,Cpw,Pw,Lw, P, t, h, T a, A D)

PROPELLOR DOMAIN. Consider a propellor on a ship (g, p. 65, 30, p. 57).

The propulsion power W (ft lbf/sec) to move the ship is the product of ship

thrust or drag F ft and ship velocity v s . This is equal to the power delivered

by the propellor which depends onpropellor velocity Vp, diameter D, speed

N, and fluid density p, viscosity _f. For a ship on the surface gravity, g is

involved in wave action. The conversion factor gc is needed for lbf and

lbm present.

Ship Thrust

lbm_a (D ft) b vp
F ibf = C p ft3 / s--_c/ \

lgYg 21 sec=/

1 d ft /f
_ec) (_tf lbfsec'_e( vss ft 2 / secJ

lbf 1 = e - g g=e- I

lbm 0 = a + g = a + e - 1

sec 0 = -c - d + e - f - Zg - 2h

0 = -c - d+ e - f - 2e + 2 - 2h

0 = -c - d - e - f+ 2 - 2h c = -d - e - f + 2 - Zh
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PROPELLOR DOMAIN

ft

pD 2 Vp 2 ]

Eu = C(Re)-e(Sh)-d(Fr)-h(Ma) -f

0 = -3a+b + c - Ze + f + g + h

0 =-3 + 3e +b - d- e - f + Z - Zh - 2e + f+ e -

0=-2+e+b -d-h

C(p)l - e(D)2 - e + d + h(vp)-d -F =

(Vs)f(gc)e - l(g)h

( I_fg c ._ e[N s D._d [D g_ h/v s_ f

Propellor power with non-viscous fluid.

and speed N moving a fluid of density p:

i+ h

b=2-e+d+h

e - f + 2 - 2h(N ,d( )es) _f

For a propellor of diameter D

/'Vie ft lbf_ C (p lbm_a 1 d\ s-77-c/: ft3/(Dft)b(Ns - cc)(g

Ibf i = -g

Ibm 0 =a+ g = a - 1

sec -I = -d - Zg = -d + 2

ft 1 =-3a+ b + g = -3 +b - 1

lbm _ ]g

c Ibf sec 27

g=-I

a=l

d=3

W= C(p)' (D)S(N# 3 (gc)"

VCgc "_

pD s 3 =N s

pD 2 vt 3") \DNs/

L Fgc ._( vt-_ 2

:
(Eu)(Sh) -_ =

b=5
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PROPELLOR DOMAIN

The final equation is the propellor domain equation with Re omitted for

_f absent, Fr omitted for g of wave action absent and Ma for velocities

ab sent.

Propellor power with viscous fluid. For a propellor of diameter D,

velocity v t and speed N moving a fluid of density p, viscosity _f and

velocity v:

tip

c 1 d ibf sec_ e
(_ft ibI C(p ibm_a(D (vt ft _ (N s___ec) (_f ft_ ]sec---'--1= fta ] ft)b\ secl \ .

s-T)V c Ibfsec l

lbf 1 = e - g g = e - I

lbm 0 = a+ g = a+ e- 1 a = 1 - e

sec -i = -c - d+ e - f - 2g

-l = -c - d+ e - f- 2e + 2 c=3-d-e-f

ft 1 = -3a+ b + c- 2e + f+ g

= -3 + 3e + b + 3 - d - e - f- 2e + f + e - 1

0 = -2+ e+b - d b=d+Z-e

)d( )e v f - 1,= C(p)l - e(m)d + 2 - e(vt)3 - d - e - f(N s _f ( ) (gc)e

_fgc _ C (_fg c_ e _.DN s_ d(. v _ f

FNsDgc

pD 2vta

(Eu)(Sh)

C (Re)C (sh)d(Ma) -f

But vt = _rDN s or Sh=

d=3.

Itip velocity_

where Ma = \ velocity /

for propellor is a constant. Adjust C so that
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PUMP DOMAIN

WgcD 5 N s3/

pD 2 v 2 /

(Eu) (Sh) -2

C(Re) c (Ma) -f

[Comparing to propellor thrust power with

: ] non-viscous fluid, the effect of adding

viscosity is to add Re term, the effect of
adding velocity is to add Ma term.

Eu : f(Re, Sh, Ma) This is the propellor domain equation with

Fr absent for g of wave action absent

(D ft)f (gc

PUMP DOMAIN. The pressure P developed by a rotary pump of diameter

D and speed N s depends on gravity g, the velocity v leaving the pump, the

fluid density p and viscosity bf and the conversion factor gc"

: C(bf ibf_ec)a(g s_c_)b(Ns_elc)C (P if-_)d(v s-_c) e

ibm f±

ibf sec2/

ibf 1 =a- g g = a - l

ibm 0 =d+ g = d+ a - 1 d=l -a

sec 0 = a- Zb - c - e - Zg

0 =a - Zb - c - e - 2a+ Z

0 = -a - Zb - c - e+ Z e =Z- a- Zb- c

ft -Z =-Za+ b - 3d+ e + f+ a

-Z =-Za+ b - 3 + 3a - a - Zb - c + Z+ f + a - 1

0=a-b-c+f f:b+c -a

P = C(p.f)a (g)b (N s)C (p)l - a(v)-a- Zb- c+ Z (D)b+ c- a (gc)a- I
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PUM P DOMAIN

Eu = C(Re) (Sh) c

= f(Re,

Pump discharge.

-C

Sh = f(Re, Fr, Eu)

V -

N--_a = f(Re, Fr, Eu)

7r D 2
where V = v _- = pump discharge,

-a -b
(Fr)

Fr, Sh)

Rearranging the pump domain equation (24,

ft3/sec

p. lO2)

Pump head. The pun_p don_ain equation may be rearranged.

(Eu)-'
(Fr)-' - f(Re, Sh)

where H = head developed by pump, ft

D ; pump diameter, ft

Specific speed. This dimensionless number (30, p. 227) is of interest

in pump performance. The pump domain equation may be rearranged
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RAYLEIGH NUMBER

and specific exponents assigned to Eu and Sh which may be rewritten

1- gH = \ gH / where w is in C

(Sh)-' = = _'4 NTs'I)f_ = "INs where _ is in C

(Specific Speed) 4 = (Eu) -3 (Sh) -2 = f(Re, Eu)

Ns2 D2_ l V 2

N s 6 D 6 _

= (gH)a (Ns 2 D 6)

(Specific Speed) -

_v_(__c_)(vse_,_--_l_
- (gH)3

(gH)3/4 -

- (gfty
sec 2]

f(Re, Eu)

(H ft)_

RAYLEIGH NUMBER. This dimensionless number occurs in convection

heat transfer. It appears redundant in that it is a product of the more

basic dimensionless numbers Re, Pr and Bu.

Rayleigh )
Ra = _ Number = (Re)(Pr)(Bu)

\Dimensionless

For plane surfaces]

use H ft height |

instead of D ft dia J

= (Gr)(Pr)

or --

= (_m)2

I "_(v)__o_,
txf2gc 2

D a (3 600)gB AT Cp

kbtf gc

Ic  m]k[
3600 Cp btfgc]k

,a, lm lbm_2(3600 sec._ (B absi Btu_°_,v_ _ _rJ(_"_) _s)(_ '(c_• F Ibm F/

hr ft FJ_ _f it _ _ ibf sec=]
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REDUNDANT NUMBERS

REACTION RATE. This property is a measure of the speed of chemical

reaction.

I_I = Reaction Rate

m lbm
sec

m lbm

Ibm

ft 3 sec

ibm

P fta sec

REDUNDANT DIMENSIONLESS NUMBERS. Certain dimensionless

numbers appear basic in that they are the simplest dimensionless

numbers that represent the given processes. In the literature there

are many other dimensionless numbers that are less basic in that they

are more complex combinations of the basic dimensionless numbers.

Some of these are listed below. Because they add unnecessary complex-

ity, it would appear better to avoid the use of these redundant dimen-

sionless nmnbers. For more discussion see under name of dimensionless

number and Convection Heat Transfer.

Table Dimensionless Numbers in Convection Heat Transfer

Nature Name Equivalent Units

Basic Nusselt

Reynolds

Prandtl

Buoyancy

Shape Factor

Nu

Re

Pr

Bu

hD

k

_I?vD

_fgc

Cp_fg c (3600)

k

D 2wB AT
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REDUNDANT NUMBERS

Table Dimensionless Numbers in Convection Heat Transfer

Nature Name Equivalent Units

Redundant Ray]eigh

Grashof

Peclet

Ra : (Re)(Pr)(Bu)

Gr : (Re)(Bu)

Pe = (Re)(Pr)

D a p2gB AT Cp (3600)

k_fgc

D 3 p2 _B AT

bf 2g c2

CP pvD (36OO)
k

Staunton

Graetz

Nil
St -

(Re)(Pr)

Nu

Pe

D

Gz : 4(Re)(Pr) T

k

Cp pv(3600)

4 /kL kL

Table Convection Heat Transfer Equation

Redundant

Dimensionless

Number s

Ra = (Re)(Pr)(Bu)

Gr : (Re)(Bu)

Pe = (Re)(Pr)

Nu
St-

Nu

(Re)(Pr) - Pe

lr D
Gz : 7 (Re)(Pr)

Basic Convection Heat Transfer Equations in

Terms of This Dimensionless Number

!

Nu : fcn[Re, Pr, Bu,

Nu : fcn Gr, Pr,

Z

) Basic Eq.B

Alternate form

Nu = fcn (Gz, Bu)
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REYNOLDS NUMBER

REYNOLDS NUMBER. This dimensionless parameter introduces the effect

of viscosity _f. The numerator contains a length term which may be

diameter m ft if there is a diameter or b ft if there is no diameter.

Re preferred units.

Re = Reynolds number, dimensionless

_j_vD (m ibm_(v s_c)(DftJvft 3 ]

btfgc btf ft2 - 3Z.Z ibf sec 2

where D ft can be replaced by L ft if L ft is more significant.

Re in mass viscosity units.

Re :'_vD _ pvD
bm

_ pvD 3600

- (btm) = \ -[_m Ibm -_ft hr]

p lbm\/ ftf---_J_v _ec)(m ft)(3600-_r/Sec]

Re in alternate mass viscosity units.

pvD
Re = _ - --

bf gc bts

7)<v 77, 

Re in alternate ft per hr velocity units.

Re -
3600 pyD _ p(3600 v)D

(bin) bm

(p ibm_{ ft_{D ft)
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REYNOLDS NUMBER

Re in alternate mass flow units.

Re : nrvD
3600

_tm

_m

D

o
_m

bm (3600) _fg c

f_-7_-r- } (Lft) (_ l_-lbmhr]_ (L ft)

(Ibm) : (3- sec_ (_ Ibf sec) (3 ibm ft__m ft hr 600 hr ] f ft2 2.2 ibf sec2]

Reynolds Number in terms kinematic viscosity. The properties of mass

density p = (m/V) and viscosity (_f or bfgc) entering into Reynolds

Number are physical properties of the fluid and are te1_perature-

dependent. For numerical evaluation of Re it is convenient to combine

p and _f in the form of a ratio (}_f/p).

vD
Re -

whereI_c]=kinematicviscosityft2
X p ] sec

(bf ft2 " Ibm sec 2

Reynolds Number units. The physical concept of Reynolds Number has

always been a little difficult with respect to dimensions because the

requirement that it be dimensionless is not completely compatible with

the very clear indication that the numerator pvL involves mass in the
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REYNOLDS NUMBER .

terms of mass density p whereas the denominator involves viscosity

basically defined in terms of force (see Viscosity):

Ib sec

Viscosity Fundamental Definition = bf ft2

To meet the dimensionless criteria most past procedure in the literature

has been to express viscosity in mass units in the denominator in order

to cancel the mass in the mass density term of the numerator. This has

made necessary the intorduction of the F --ma law to express viscosity

not in terms of a drag force but in terms of the mass that would be decel-

erated by this drag force. The resulting term involving mass is:

Ibm

Viscosity ]E×pressed in Mass Units : bs ftse<

'l'hc relation between P'm and bs is obtained by introducin Z conversion

factors to forn_ the dimensional]y consistent relation (see Viscosity):

_s : _f gc

(_s ibm _ ibm

In order to preserve the physical concept of viscosity as a force the •

preferred form of Re is:

Re : __vL

bf gc

Not Preferred:

Most of the literature is rather loose in that precise units are not indicated

for Re as is done in ARDA dimensional analysis procedures. In the litera-

ture such terms as gc and J are often left for the reader to supply so that

Reynolds Number is somewhat indefinitely designated as:
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REYNOLDS NUMBER

where:

p : density

v = velocity

L = length

= viscosity

Sometimes (see Combustion Domain) where most of the concepts involve

mass diffusion and mass rather than force properties are involved, a

shorter solution is obtained by using _m in Re = pvZ/_m, but it should

be kept in mind that this is really an alternate sometimes shorter version

of Re = (3600 pvg/_fgc).

Re as flow parameter. A fluid in flow has the properties of Velocity v,

density p, a viscosity force and a size dimension g. Reynolds Number

is a dimensionless parameter relating these properties. Several concepts

and derivations are possible.

Flow. In normal turbulent flow there is a general velocity v but

the individual fluid particles are in a highly variable flow pattern in which

their velocity is constantly changing in magnitude and direction as a result

of viscous drag forces of adjacent fluid particles.

Flow Model. It is convenient to consider a model. A fluid particle

may be considered as a very small cube of length L on a side n_oving in

a given direction. It is continuously either accelerating from 0 to a

maximum velocity v in this direction or decelerating from a maximum

velocity v to zero by the action of viscous forces.

The maximum velocity may be considered to be I.

the overallvelocity of the fluid or at leastrelatedL2 I__,,_ 1

to the overall velocity of the fluid v. The force "_

required to accelerate the fluid cube from 0 to v L

given by the F = (m/gc)a law. The viscous drag

force is the viscous force due toviscosity defined

as the force ibf on a plane area ft2 to move it

at a velocity v : L ft/sec past another plane area

at a distance L ft from the first area.

Flow is also discussed under Flow Concepts and in the literature (ZS, p. 165).

Reynolds number as a force ratio. The force of deceleration is also known

as inertia force.
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REYNOLDS NUMBER ,

Re =
(Force of Deceleration)

( c)a
(Viscous Drag Force)

}ifA

A v c _fgc

For a tube D is used for the size dimension L.

Reynolds Number as a stress ratio. The length terms in the numerator

of Re may be L or D.

(___jvLm (_cc) L (aF--) Iv_ v A
Re = - -

bf gc bf bf

Aft 2

_f v ibf a sec-----{

}if_ sec ft I

Thus, Re may be interpreted as a ratio of forces per area to produce

acceleration of the mass of the fluid or inertial stress to the viscosity

or viscous stress.

Reynolds Number as an energy ratio.

(KE Resulting From Acceleration of Cube from 0 to v)

Re = (Drag Energy)

(F)avg drag (L)
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REYNOLDS NUMBER

1 v2 La
7p

Re -

Z 2 v
gc _f

_ 2vL

_f gc

Reynolds Number as a viscosity,parameter. It is desired to develop

Re as a dimensionless number containing viscosity bf. The gf units

are written in unreduced form as they exist in the basic physical concept.

Reynolds Number]Re = [ Dimensionless

(Numerator)

(gf lbf ft sec_ft_s7;

_f ft2 ft

mv 1

_f

_f gc

_f gc

_v_z_k
_f gc
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REYNOLDS NUMBER,

Reynolds Number by dimensional analysi s .

(Re) : C(L ft)a (v sec! fta J

lbrn 0 : c + e

ibf 0 =d - e

sec 0 = -b + d - Ze

ibf se c -\d

)ft2 gc
lbn2_ ft ]e

ibf sec 2]

e = -c

d:e=-c

b=d-2e

= -C + 2C = C

ft 0 : a+ b - 3c - 2d+ e a : -b + 3c + 2d - e

: -c + 3c - Zc + c

= C

Re : C(L)C(v)C(p)c(gf)-C(gc)-C

=C _j =G
I (._]b_m_ ft I (L ft])] cft31 v  

btf ibf sec_]

where both C and c can equal unity. D is used for L in tubes.

Reynolds Number as a property parameter. Viscosity is the property

uniquely appearing in Reynolds Number as compared to other dimension-

less parameters thus Re is considered as introducing the effect of

viscosity btf.
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SCALE FACTORS

SCALE FACTORS. True model similarity with a prototype is achieved

if each kind of dimensional number in the law expressing the physical

phenomena has the same numerical value (28, p. 170). Thus, a model

theory of scale factors may be formulated.

Scale factors. Using the subscript m to indicate model as compared

to the prototype value without subscript.

For some Fr

(Fr)m = (Fr)

V2nq V 2

gm l_rn gL

l,'or salne

V 2 V 2m

Z m g

V m

For same Re

(Re)m = (Re)

pmVm Lm _

{_f)m (gc)m - _f gc

where (gc)m = gc. This is always true so gc terms will always cancel

thus can always be omitted.

Pm

(_f)m -tvV m

Lm _f

167



I

SCALE FACTORS •

The relation between p and _f must be different (i.e., different fluid) for

the model as compared to the prototype. Viewed in a different aspect, for

same Re.

(Re)m = Re

Pm Vm Dm pvD

_m gcm b gc

=l

p' v' D'
- i

_' gc' (propertY)model

where the prime is used to denote the ratio
(property)prototype "

The last relation must be true for similarity.

For same We

(We)m = We

2 LmPm Vm

Tm(gc)m
: p__v2 Z where (gc)m = gc

Tg c

Pm

Z m (<ml
= i

T

T

The relation between p and T should be different for model as compared

to prototype.

These similarity considerations must be carried on through other dimen-

sionless numbers if present.
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SCALE FACTORS

Scale factor ratios. The similarity conditions that a model must

satisfy as compared to a full-scale system can be expressed as

the requirement of equality of appropriate dimensionless products.

These result in conditions to be imposed on the various physical quan-

tities involved can be expressed in the form of scale factor ratios.

Dimensionless nm-nber as a ratio of scale factors. For similarity

the appropriate dimensionless numbers of model and prototype must

be equal.

(EU)m : Eu

Fm(gc) m Fg c

Pm I 2 v 2- pL 2 v 2

_gc I
=l

where the prime denotes ratio
(propertY)mode I

(pr°perty)prototype

The dimensionless number for scale factors with primes is exactly

similar to the original dimensionless nmmber, thus any dimensionless

number is also an expression of scale factors.

For the same Fr

(Fr)m : Fr

V 2 V2 -_ 2 V2m m

gm Lm - gL or _gm L5 gg5

(v____ : 1 (v')2
g' L' (g,)(L,) 5

(v')2 : g' L' v' : (g,)1_ (L,)5/2

On the surface of the earth g' : I.
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SCHMIDT NUMBER

Where several dimensionless numbers are involved, the several resulting

scale factor relationships apply jointly.

Another illustration of scale factors is given under Flow Through Orifice

Produced by Gravity.

SCHMIDT NUMBER. This dimensionless number expresses the diffusion

of one material into another as expressed by the mass diffusivity Dm.

(Schmidt Numbe r_
Sc --\ Dimensionless !

ibm

_tm ) _m ft hr

ft a ] m _r ]

Derivation of Schmidt Number. It is desired to develop Sc as a dimen-

sionless number containing the mass diffusivity Dm. The D m dimensions

are written in unreduced form as they exist in the base definition (see

Diffusivity)

Schmidt Numbe r)Sc =\ Dimensionless

(Numerator)

Ibm ft3 ft
D
m hr Ibm ft2

(where numerator has same

units as denominator)

(lam l-bm/ft hr/

[p lbm __ f--/r!
lbm ft a

Dm hr lbm ft

_) ft2

-(Din
(Momentum Diffus ivitg)

(Mas s Diffusivity)

ibm )

bt(p____m) gm ft hr
= = ( lbm_ fta 1P f-7_-/( D hr/
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SHAPE FACTOR

SHAPE FACTOR. Dimensionless numbers of the following form may

be termed shape factors.

[ Shape Factor
SF = _Dimensionless]

\D ft!

Dimensional analysis makes no distinction between properties having

the same units as for example length Z ft, diameter D ft, width D ft,

roughness eft, etc. Where such properties enter into the functional

equation

X =fcn (L,D, We ....... )

the analysis will result in

X = c(L ..... if only L and D are present or relationships

of the form

c[L W eX--
' D ' D ..... if more properties are present.

In fact simplicity in treatment may be obtained if more than one

property of the same units is omitted from the functional relationship,

the ARDA analysis carried out and any pertinent term such as

L W. p_.p_ etc inserted in the final relationship
D' D' Pw' "

Properties having same units. For the reason previously discussed,

dimensional analysis cannot distinguish between property symbols

having the same units such as L ft or D ft. For this reason such
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SHEAR STRESS "

dimensionless numbers as Re may be interpreted as either pvD or" vp_y__g
_m _m

A decision as to whether D or L is to be used must be based on the

physical concept of the process involved.

Similar problems enter in the dimensionless numbers such as Euler

Numb e r.

Fgc Pgc APgc

Eu pay2 or-- or-- pV 2 pV 2
etc.

SHEAR STRESS IN PIPE. This is usually a boundary shear stress.

f
lbf

sec/ (Dft) (p lbm (_flbf_sec_ d e lbmft _

lbf 1 =d-f

=d+c c=l -d

ibm O:c+f

f:-c:-i -d f:d- i

sec 0 :-a+ d- 2f

:-a+ d- Zd+ 2 a:2 -d

ft -2 :a+ b - 3c - Zd+ e + f

-Z =2 - d+ b - 3+ 3d- Zd+ e+ d- i

:b+ d+ e

S = C(v) 2 - d(D)-d - e(p)l - d(_f)d(e)e(gc)d - I

Sgc _/_f gc\ d(D)e

b=-d-e
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SHIP DRAG

ibf Ibf (Sgc_
The shear S _ is dimensionally the same as P f-_ so that \v2p!

dimensionalig is the same as \v2p ! = Eu. The term \vp/ has been

called a Fanning number, but there seems to be little purpose in

introducing another name.

SHIP DRAG. This is a classical problem in dimensional analysis

(3, p. 61, 19).

The shortest solution is by Flow Region Z of the general Drag Equation.

Alternate]y a solution by basic ARDA principles follows.

Drag on a ship. The drag force F on a ship is assumed to be a function

of various properties as follows.

Drag = f(viscosity, gravity, velocity,

constant)

This may be expressed in engineering units:

density, length, gravity

F Ibf = C (}xfIbfsec_a ft _b ft I c
sec!

d e f

(p lbm_ ft) lbm ftlbf sec 2

where (A)

g = local accleration of gravity, 3Z.Z--

earth

ibm ft

3Z.Z "ibf sec 2 'gc = gravity constant,

universe

ft

see 2 ,
on the surface of the

valid at any location in the

The individual unit-properties and exponents on each side of the equation

must be equal. For example, for Ibf

ibf I = Ibf a - f

Writing the equality for the exponents alone, for each one of the unit-

properties such as Ibf, lbm, sec and ft:
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SHIP DRAG

lbf

Ibm

sec

ft

1 ----a - f

0=d+f

d = -f =-a + 1

0 = a - 2b - c - 2f

=a - 2b - c - 2a+ 2

c ---a-Zb+Z

0 = -2a + b + c - 3d + e + f

= -Za + b + Z - a - Zb - 3 + 3a + e + a -

=a-b-Z+e

Substituting these values of f, d,

F = C(}If)a(g)b(v)Z - a- Zb(p )

(_f gc_ a (Lglb

\v2L 2 p

Re) Fr)

This may be variously written.

(Eu) = f(Re, Fr)

F = f(Re, Fr) v2 L2 p

gc

F : (Eu)v__tbf_a
gc

\gc/

c and e in Eq (A)

1 - a(L)Z - a + b(gc)

f=a- 1

d=l -a

c=2-a-2b

e=2-a+b

a- i
(B)

(C)

(D)

(E)

(F)

(G)

(H)
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SIMI LARITY

where:

Eu = Euler number, dimensionless = \v 2 L2 P =

Re = Reynolds number, dimensionless =(Z___ _

\btfgc ]

Fr = Froude number, dimensionless = CvZ_

\Lg]

A = wetted area, ft2 = L 2

a, b, c, etc. = exponents which must be empirically evaluated.

SIMILARITY. As a summary it may be stated that dimensional analysis

and similarity are closely re]ated in that dimensional analysis yields

dimensionless numbers and two configurations are similar if the physical

phenomena pertaining to the configurations can be expressed by the same

equation expressed in dimensionless number form.

v u ±

properties expressed by a dimensionless nx_mber, if their dimensionless

numbers of this property are the same. As a well-known example, two

configurations having the same Reynolds number are similar \vith respect

to the property expressed by Reynolds nu_ber.

Detailed considerations of similarity. Dilnensional analysis and sinlilarity

are closely related. Two systems are similar with respect to the proper-

ties given in the physical law, ifthe same physical law is applicable to

each system. Dimensional analysis is a procedure for formulating in a

systematic simplified manner, by the use of dimensionless numbers, these

physical laws to include multiple properties. For example

C = (2vL_ = {Reynolds Number)
\btfgc]

is a formulation of C = f(p,v,L,bf,gc) that expresses the relation between

viscosity and certain other properties. If this relation is applicable to

the two systems, the systems are similar with respect to these proper-

ties, but only the properties given. If properties are involved in other

manners, additional relations are involved. If a drag force F is required,

an additional parameter must be supplied to include its relation
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SIMILARITY

a
pAv2 ) = Ckp.f gc/

Eu = C(Re) a

would include this effect. If surface tension is involved the relation

becomes

gu = C(We) a (Re) b etc.

Because there are an infinite number of properties, it may be considered

that the complete defining equation would have an infinite number of

terms. However, under certain conditions only certain parameters will

be important and dominant. Others will be less important or negligible.

Thus for convection heat transfer

Nu : C(Re) a (Pr) b (Bu) c (_)d

Thus if the dominant dimensionless number parameters are included

and the effect of other parameters are negligible two systems are

similar if the same equation governs.

Practical similarity constraints. As a physical law the coefficients C,

a, b, c, d, etc., must usually be established enupirically. A given set

of numerical values is valid over limited ranges of numerical variation

of the parameters suchasRe, Pr involved. Use of the equation beyond

these limits is subject to the usual uncertainties of an extrapolation in

that the coefficients probably change. Thus similarity of two systems

is restricted to the numerical range limits of the parameters involved.

For example, if two systems are known to be governed by the same

physical equation involving a Reynolds number in the range between

i000 and Z000, the systems are similar in this range and not necessarily

similar at Re = 4000. Thus arises the statement that true model

similarity will be achieved if each kind of dimensionless number in the

physical law expressing the physical phenomena has the same nui_erical

value (or range of numerical values).
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SIMI LARIT Y

Dimensionless number limits. It follows immediately that any equation

in dimensional number form should have the constraints stated as

numerical ranges of the dimensionless number parameters for which

the equation is valid. For each parameter these ranges also depend

upon the ranges of the other parameter which means that a dimensionless

parameter equation should include all dominant parameters.

Empirical evaluation. Dimensional analysis seldom establishes the

numerical values of the coefficients. This must be done empirically.

As a practical procedure this can be done in a given system by holding

as many dimensionless nun]bers as possbile at a constant value and

successively varying one to establish its coefficient and exponent.

In this manner dimensional analysis permits organization in the formu-

lation of physical laws from test data. The test data may be a limited

number of values in specific ranges.

Determination must be made of the physical properties governing the

process from past knowledge or from tests. This is a skill developed

from a study of the application of dimensional analysis to many systems.

Additional thoughts are given under the discussion of the Associative

Method.

Model Similarity. True model similarity with a prototype is achieved if

each kind of dimensional n_imber in the law expressing the physical

phenomena has the same numerical value. Thus a i,Iodel theory of scale

factors may be formulated. See under Scale Factors.

SIMILARITY DIMENSIONLESS NUMBER CRITERIA. Similarity with

respect to certain physical properties requires equality of corresponding

related dimensionless numbers. This is because the physical property

occurs only in the particular dimensionless number or because it is a

dominating factor in the dimensionless number. The physical property

may also occur in other dimensionless numbers which are omitted if

their effect is zero, negligible or small.

This required equality of dimensionless numbers for similarity may be

variously expressed. One method is utilizing scale or scaling ratios

R.

Dimensionle s s) = (Dimensionless)
Numb e r \ Numb e r

model prototype

Nm=N
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SI!MILARIT Y

_] = N' = l

• ° • ° •

(PropertY)mode I Am

where primes denote a scale factor of (Property)prototype A

A, B, C denote terms in the dimensionless number•

As an example for flow:

For flow similarity:

_{p' v' Z'_ Rein

Re' -\_f, gc'] representing Re -

=i

where:

Re m (Re) model Pm Pmodel
Re' - - p', _ _ , etc.

Re (Re)prototype P Pprototype

gc' and similar ratios of constants are always = 1

At same location ratio of g = 1

Any units of property may be used because conversion factors

cancel out.

Use of the preceding notation simplifies similarity problems considerably.
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SIMI LARIT Y

Similarity requirements in fluid flow. A following presentation indicates

possibilities in formulating similarity requirements in the fluid fi0w

domain. The relations are fundamentally the same whether considering

a stationary body in a moving fluid (ships, piers, aerodynamic configura-

tions or in fluids such as water or air) or moving fluids related to or

contained in stationary walls (spillways, dams, pipes, pumps).

Flow of fluid particles. In general the motion of fluid particles is

influenced by the result of actions of gravity and viscosity. The action

of gravity tends to cause a fluid particle to tend to move downward. The

action of viscosity tends to cause a fluid particle to deviate from straight-

line motion in the direction of flow. Either or both these actions result

in a movement (microscopic) of the individual particles with constantly

changing ve]ocities in constantly changing directions. However, an overall

velocity (macroscopic) in a given direction of the fluid or object is

produced which is the velocity v in the equations. This velocity v is a

function of Froude Number Fr = (v2/gL) for gravity and or Reynolds

Number Re = (pvZ/_fgc) for kinematic viscosity = (_f/gc)-

Effects establishing velocities. For flow regions where gravity g effects

predominate over viscosity effects; such as partially-immersed ships on

water, flow of water over dams and spillways; the Froude Number Fr

establishes the law governing flow velocity v. Gravity g is not to be

confessed with the constant gc"

For flow regions where kinematic viscosity (p/pf) or (P/Mfgc) effects

predominate over gravity effects; such as bodies fully immersed in

fluid such as aircraft, submarines, gas and fluid flow in pipes; the

Reynolds Number Re establishes the law governing flow velocity v.

For flow regions where both gravity and viscosity are important both

Froude Number and Reynolds Number, such as perhaps partially-

immersed objects in high viscosity fluids, etc; hoth Fr and Re establish

the flow laws.

Dimensionless number ratios. When two dimensionless numbers govern,

similarity requires that numerical values of the corresponding dimen-

sionless numbers be equal. The ratios of corresponding dimensionless

numbers will always be unity. This means that when two or more dimen-

sionless numbers govern, their ratios to any power may be combined by

multiplication in any fashion desired. This is true because one raised

to any exponent is always one.
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SIMILARITY

The exponents of the ratios of dimensionless numbers for combining
by multiplication are usually selected in such a way as to eliminate
some property from the combined terms, usually velocity. Re and Fr
ratios are therefore usually combined as

Each

term

is

ratio

{p2 v2 17
Re 2 _f2 gc 2 ]

= 1 (velocity v eliminated)

In the preceding the primes denoting ratios of (propertY)model/

(property)prototype have been omitted to avoid the confusion of

designating every term with a prime, but with such omission the equa-

tion should be so designated so that ratios of each property will be

inserted when the equation is used.

Euler Number. The Euler Number Eu is essentially a conversion

factor usually used in similarity to convert velocity v to drag or force

F or to pressure P (= force per unit area).

_{Fgc _ _(Pgc_ = 1 if each term is a ratio.
Eu _bL 2v27 -bv /

The Eu number has characteristics similar to gc except that the

numerical value of Eu varies with the data whereas the numerical

value of gc is a constant. For similarity the Euler Numbers must

also be the same so that the Euler Number Ratio = (EU)model/

(EU)prototype = i. This is also true for gc in that gc cannot be different

for model and prototype. The ratio of gmodel/gprototype is usually

unity also (but not in the new field of space exploration).

Thus whenever it is desired to express Fr or Re ratios (or any other

dimensionless n_mber expression such as (Re2/Fr)) in terms of force.

the dimensionless number may be multiplied by Eu to any power.

Useful combination in problems involving drag requiring a conversion of

viscous effect Re to force by the introduction of Eu are

1Re and

Eu
Re 2 Eu = t_ _ g_ /\ph2v2/ = b_-_gc = 1

gu Fr = \pL2vV = tpL3g/

v. /.

F r and

Eu

tf

Each

Term

Is A

Ratio

where (Fv) = power.
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SIMILARITY

Strouhal Number. The Strouhal Number Sh is essentially a conversion

factor, useful for pumps for example, for converting velocity v to pump

speed that will produce that velocity. Pumps usually pump viscous fluids

with negligible gravity effects, so that Re and Sh is usually the combina-

tion of interest. The length dimension of significance in a pump is rotor
diameter D.

Re and (Re)(Sh) _ vD_ _N--_I _-PN s D2-_
= \_fgc/ = (_-fgc) = i if each term isSh a r atio

Weber Number. Under conditions of capillary flow surface tension

effects appear in terms of the Weber Number.

Tabulation. The following tabulation summarizes relationships. Similar

tabulations could be made up in other domains.
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SIMI LA R T,TY

b'hlid flow similarity.

Relative Motion

Fluid and Solid

i i
_D Lnlp

[_ T_ rms v

Si. = N--a-_D
V

Viscosity Effect

In Terms v

Re -

vL

Gravity Effect

In Terms v

l I
/

Viscosity In

Pump s

ReSh = _FXfgc ]

Combined

Viscosity

And Gravity

Re 2 - f_

Fr gf2 gC 2 ]

Surface Tension

In Terms v

We = pv2L

Tgc

Re = Reynolds Number

Fr = Froude Number

Eu = Euler Number

We = Weber Number

Viscosity Effect

In Terms F

_f2 gc

Gravity Effect

In Terms

Flow

rate V = vZ 2

Fr - gZ5

Gravity Effect

In Terms

Power = _V

Wgc
Eu(Fr) a'_ _

Sh = Strouhal Number

Force Effect

In Terms v

Eu= (Fgc_
_L 2 v 2]

=q_ sc_

_F rz I

Gravity Effect

In Terms F

Fgc

Eu Fr - pL a g

Force Effect

In Terries Power

EL
= VC=Fv-

t

Wg c

Eu - PI_ v _

IgZ



SIMI LARITY

Model pump example. A model pump one and one-half times the size of

the prototype pumps air to simulate with respect to viscosity effects

the prototype pump pumping oil at 3600 rpm. The kinematic viscosity

of air is 16.0 x !0 -s ft2/sec compared to a value of 200 x i0 -s ft2/sec

for the oil. Determine the speed of the model pump in rpm for similarity.

Re' Sh' Ns' (D') 2- - l (where gc' = I)

gc

_f

3600_200 x I0 -s]

I |

\]) I

Model pipe example. A pipe model in which water of kinematic viscosity

1.35 x 10 -s ft2/sec flows at 4 ft/sec is to simulate, with respect to viscosity

effects, a 20 in. pipe in which air having a kinematic viscosity (_f/p) of

16.5 x I0 -_ ft2/sec flows at 7 ft/sec. Determine the proper model pipe

diameter in inches.

v' D'

Example of model in viscous fluid. A 1/50 size model indicates a drag

of 3.15 Ibf in water of viscosity 2.35 ibf sec/ft 2 and density 62.4 Ibm/ft 3.

For similarity with respect to viscosity effects, determine the drag of the

prototype in ibf in air of viscosity 3.75 ibf sec/ft 2 and density 0.075 ibm/ft 3.

(Re') 2 (Eu') F' p'- - 1 where gc' = i,
(_f,)2gc'

L' is not involved

6Z.4 1
Fm(p, ) 3.15 _1

F - (p.f,)2 - (2._35375Xx 110-5_'?I= 0.667 ibf

answer
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STEFAN NUMBER

Ship model example. A 1/20 scale ship model tested in water has a

velocity of 8.30 ft/sec and a drag of 10 Ibf. For similarity with

respect to gravity effects determine for the full size ship: (a) the

velocity in ft/sec and (b) the drag in ]bf.

(a) (Fr') -
(Vl) 2

gT L'
- l (where g' : 1.0)

- 27.1 ft/sec answer

F I gc I
(b) Eu' Fr' - l

p' (L') 3 g' - [w ere ci]

Fm i0
F - -- - 10(Z0) 3 = 80,000 ibf answer

Model wit_ gravity and viscosity similarity. A i/4 scale model is to

simulate a prototype with respect to gravity and viscosity effects. For

the same gravity determine the proper ratio of kinematic viscosity (_f /g).

(Re') 2 @' (L') _ where g' : l
1

Fr' (gc,)2 gc' : i

7/ : (L')3 thus _ : (L' : -- :
\P/m

answer

STEFAN NUMBER. This parameter is more in the nature of a heat

transfer ratio than a dimensionless number obtained as a result of

dimensional analysis. Its use should therefore probably be discouraged.
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SOUND VELOCITY

Sf IStefan Parameter_
=\ Dimensionless !

_. (Radiation Heat Transfer)

- (Conduction Heat Transfer)

A AT Btu
AL

SOUND VELOCITY. Dimensional analysis is of little assistance as the

direct solution is shorter and better.

Direct solution. The general energy equation is applicable comparing

conditions at a point during and after passage of a kinetic energy sound

wave (15, p. 5Z8) with PE, Q and (W/J) = 0.

liE =H

z \g l J

Differentiating,

where m may he cancelled.

1 Zv g
dv = dh where-;-n_ay be cancelled

2 Jgc

where

v V dV

dv = (dV) _ from A - -v dv

I mduJ.]v from 0 = dq = dv+ Pd------_u
- \ P ]V mJ

mduJ
dV-

P

for an isentropic

or

J

where -_ may he cancelled

[ dh'_ PV
= gc

= gckRT

v : _/gckRT = velocity of sound in a gas
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SOUND VELOCITY

Din_ensional analysis solution. Applicable equations are:

KE =H

I m v 2

2gc J
- mh : mCpT

PV : toRT

sec

pvk: C

k=Cp
C v

ft
v - C

sec

-1 = -2f

= pRT

)P f---_} ibm F abs"

Bin

Ibm F ab s

b c d
Btu

(T Fabs)(Cp ibm Fabs )

)e(g c ibmft._f(J ft ibf_ g
lbf sec 21 Btu ]

l
f =--

2

ibf 0 =b - f+ g

1

:b -_+ g

1

b+ g :_

1 1
g=O

ft : -3a + b + f+ g

: -3a+ f+ b+ g

1 1

:-3a+_+_ a=O

Ibm 0 =a-b-d-e+f

1

=O-b-d-e+ 2
b+d+e-

1

Z

Fabs 0 = -b + c - d - e

=-b-d-e+c

l

: 2+c

l
C ------

2
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STANTON NUMBER

o=d+e+g
=d+e+O e -- - d

= - b+ (b+ d+ e) +b + (b+ g)

1 i

= b+i-b+_

1
b ----

Z

1 I (CP) d -d Iv = Cp ° R _ T_ (Cv) (gc)i (5)°

\_--_--_G _ d where "_=k

: \c./ Cv
C=l

1

= \_c kRT _ where d is assumed equal to

STANTON NUMBER. This dimensionless number occurs in convection

heat transfer. It appears to he redundant in that 1t is a product of more

basic dimensionless numbers.

Stanton Numb e r /
St = k Dimensionless !

k

h

3600 Cp pv (3
sec_ Bin "

3600 Cp pv

Nil

Re Pr

Redundancy. The preceding is a form of the convection heat transfer

equation.

Nu = f(Re, Pr)
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Stanton Number as energy ratio. The Stanton and Nusselt Numbers can

be interpreted as similar energy ratios by multiplying numerator and

denominator by AT (4, p. 201). This is din_ensionally valid but the AT

are different.

h hD

St : 3600 pCpv Nu :

hAT

(p CpAT) 3600 v

(Total Heat Transfer)

(Convection Heat Transfer)

hAT

(Total Heat Transfer)

(Conductive Heat Transfer)

STOKES LAW. Stokes'law for the velocity of a sphere falling in a fluid

is

2[(_)sphere- (_)liqui/9 :_

Z (_j =__v where (_) = (_C) W mi = p(ilR2 or V - V gc gc

2 I_) Ev° \gc :k2 where p is a difference of densities.

_ (p ibm_ g se--c2 _ (Zf

c ibf sec2/

(R ft) 2

Expressed as a possible dimensionless number:

Stokes Law Number 1
SL : \ Dimensionless I

9 [__fVgc ] (viscous force)

1 : TLp_- _ g - (gravity force)

9[_gc ] v[ ]

LpvmJLgRJ

: 9 [_e]r_ ] (Fr)_rl : 9 (Re)

where D = ZR
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STROUHAL NUMBER

SmD_T+_^+ _,TTT_,fn'm_ This parameter occurs in vibration pump and

propellor problems involving frequency N s cycles/sec or N rpm. Sedov

(3, p. 58) incorrectly calls this the Strouhaille Number.

(Sh) :{Strouhal Number_
\ Dimensionless ]

NL

60v

min!

-(00 min!Sec](v s_c) = (6o+o_l(v+-_)minf sec

Strouhal Number for propellors. The ratio of forward velocity v to tip

velocity = TrNsD is of significance and results in an advance ratio

(24, p. 88).

Advance Ratio =

ft

( / v-v sec 1

N--7 -- s _ ft

Dimensionally the advance ratio has the units of the reciprocal of the

Strouhal Number.
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SUFFICIENCY

SUFFICIENCY. Dimensional analysis is a powerful analytical tool in

determining relationships, but there are grave limitations requiring

knowledge and judgement concerning utilization on a parituclar configu-

ration.

The kind of physical properties involved in a particular procedure must

be known either from experiment, analogy or perhaps a little intuition.

There is no guarantee of sufficiency. If all properties are not included,

the results will be faulty. If irrelevant properties are included, the

results will certainly be confusing and probably faulty.

The numerical constant C and the numerical exponents a, b, c, etc.,

are not determined and must be found empirically.

It may be expected that dimensional analysis equations will have limited

ranges within which certain dimensionless numbers should be confined

because of limitation of the domination of certain physical variables in

certain ranges. These ranges must be determined by experiment. For

example, the general convection heat-transfer equation may be divided

into certain ranges in which laminar flow, turbulent flow or natural-

convection physical properties and associated dimensionless numbers

are dominant.

SURFACE TENSION. Consider a needle-like "line" of length L in a

fluid surface interface. Surface tension (T ibf/ft) is defined as the

force in the surface ibf per ft length of line that acts to pull the line

apart. Of the various symbols, T, y, 0-, in the literature T is

preferred.

Representative surface tensions (Ref. Ii) are:

Substance Temperature T gmass T ib___f
sec 2 ft

Water 68 °F 72.75 0.00498

Mercury 68 °F 484 _ 0.0356

Helium -272 °F 0.147

When in contact with a solid the direction of the surface tension force

depends on the contact or wetting angle, O, as shown in the figure.
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SURFACE TENSION

Solid Phase

/

/
/

/

/
/

/
/

/

/

/
/ Liquid Phase

SURFACE WETTING

Surface tension as work per area. A second aspect is of significance.

If this surface tension force acts through a distance, surface tension

n_ay be thought of as the work TL required to create new surface area,

for instance, expanding a bubble.

Z __ F1b Lft )ftlbfAft 2 - ft2

One proof of this bubble expansion is as in the figure.

Entering

Flow Energy
{ Bubble Internal

X _-- Pressure _ 2T

R

rface : 4_rR 2

BUBBLE EXPANSION
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SURFACE TENSION

A bubble of radius R expands dR in radius or dV in volume requiring a

work FL equal to the flow energy P dV entering through an imaginary

duct. This produces new bubble surface.

F lbf Z ft P dV

Aft 2 - 4_(R + dR) 2 - R 2

ZT (4 R2)dR
R

4z(ZR dR + dR 2)

where the second order dR 2 may be neglected as negligible.

8T _R dR

8_R dR

--T

Surface tension conversion. The preferred units of surface tension

are T force/length. The literature sometimes gives surface tension

values in mass units T m mass/area = T/g c. The conversion factor

is

(i _rasrneTaS s)

gc

(l grammass)(1000 k_--ffl(2"54_-.) (12_-t")sec2

(9lbf kgmass] \81 kgf sec 2]

6.85 ibf

- 105 ft

Expressed as a conversion factor:

__

T iv )ns rammas s

sec

Pressure of surface tension. A stationary bubble immersed in its own fluid,

such as an air bubble in air, has an internal pressure as a result of surface

tension holding the bubble together as in the figure.
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Volume Sphere 4 1
='_R3 =7 _rD3

Surface Sphere = 4_R 2 _
_rD 2

4

STATIONARY BUBBLE PRESSURE

The surface tension T around a circumference _D contains the internal

pressure PT over an area wD2/4.

4T ZT

PT- D - R

SYMBOLS GENERAL. Special symbols are defined at the place where

they are used. General symbols are as follows:

a = acceleration

a =thermal diffusivity, ft2/hr : (_Cp)

A = area, ft2, frequently A = L 2

B = coefficient of volume expansion ft3/ft3F abs

Cp = specific heat and constant pressure, Btu/ibm F abs

C = any constant in general. Usually dimensionless

D = diameter, ft. In expressions not having diameter use L

= equivalent diameter for conduits : 4A/P
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SYMBOLS

Dm : mass diffusivity, ft 2/hr

E : electric field strength, volt/ft

f = fcn : function of

F = force, ibf

FE = flow energy, ft Ibf

g = gravity acceleration = 32.2 ft/sec 2 on surface of earth

gc = acceleration constant = 32.2 lbm ft/Ibf sec2

h = surface heat conductance, Btu/ft 2hr F

H = height, ft

H = magnetic field strength, amp/ft

I = electric current, amp

ff = conversion factor, 778 ft Ibf/Btu

ffm : metric conversion factor, 0.738 ft ibf/joule

k = specific heat ratio, cp/cv, dimensionless

KE : kinetic energy, ft ibf

Z = length, ft. May also use diameter D

m : mass, Ibm

N s = revolutions or cycles,

N = revolutions per minute,

1/sec

i/rain

P :perimeter, ft. Wetted perimeter or perimeter through which

heat flows

P = pressure, Ib/ft 2

PE : potential energy, ft lbf
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SYMBOLS

q = electric charge, coulomb = amp sec

q = heat valve, Btu/Ibm

Q = heat, Btu

Q = energy, joules = coulomb sec = amp volt sec

R = radius ft. Sometimes a length different from L

t = time, sec

T = _ = surface tension, Ibf/ft

T = temperature, F abs

/XT = temperature difference, F or F abs

IJ = chemical reaction rate (ibm/sec)/Ibm

v = velocity, ft/sec

v s = reference velocity, frequently velocity of sound, ft/sec

V = volume, ft3

V = electric potential, volts

w = weight, lbw

W = work, ft ibf

A = difference such as AP, AT, Ap, AV

p = (m/V} = mass density, ibm/ft 3

k = molecular free path, ft

= viscosity, expressible in various units. See Viscosity

_f = viscosity in basic units, Ibf sec/ft 2

_m = viscosity in mass units, ibm/ft hr = (3600 _fgc)

_p = magnetic permeability, Ibf/amp 2
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SYSTEM OF UNITS

0-= electric conductivity, amp/volt ft

= electrical permittivity, amp 2sec2/lbf ft 2

Dot over symbol signifies per sec, thus V ft3/sec, _Vft lbf/sec, etc.

SYSTEM OF UNITS. It is customary to adopt dimension systems in which

certain dimensions are fundamental and to assume that the remaining

dimensions are derived from these basic dimensions. It is thus possible

to assume any basic dimension from one dimension (usually time) to an

infinite number (no derived dimensions). Typical systems are:

]. mLt System Z. FLt System

m mass F force

L length L length

t time t time

T temperature T temperature

(F force, H heat, etc. (m mass, H heat

expressed in terms of expressed in terms

m, etc. F, etc. w

Basic

Equations

Required

Are

F =ma

H=FL

• mLtH System

Add H heat to

System 1

4. FLtH System

Add H heat to

Sy stem 2

Basic

Equation

Required

IsF =ma

. FmLtH System

This system, in increasing present use, is

compatible with the present tendency to clearly

distinguish Ibf from Ibm with a corresponding

reluctance to express ibm in ibf units.

No

Basic

Equation

Required

o Two Dimension Lt System

This system is not in use but is given as an illus-

tration that a so-called measuring system may have

any number of dimensions providing certain funda-

mental physical laws are used. If the fundamental

acceleration law F = ma is used to eliminate F by

expressing it in terms of m, the additional funda-

mental gravity law F = mM/L 2 may be used to

eliminate mass so that both force and mass may

be eliminated to express mass in terms of

time and distance only.

Basic

Equations

Required

Are

F =ma

H=FL

mM

F = --LT-
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THOMA NUMBER

Mm

ma=F- ljz

M = aL 2 in _ t2 or-- unitssec 2

THERMAL DIFFUSIVITY. This number occurs in transient heat

transfer involving conduction and heat capacity.

k
a -

p Cp

k Btu ft )ftz hr ft2 F

hr- (p lbm_ Btuft / (% lgJi }

THOMA NUMBER. The Thoma number is related to pump cavitation

(see Cavitation).

where

Thoma Numbe r_
Th = \Dimensionless ]

_ P____ (I°, - Pv) psia

ZiP (1°2 - Pl ) psia

P : (PI Pv) = allowable pressure reduction of fluid because of

velocity

AP - (P2 " PI) = pressure difference across pump

psia = pounds per square inch absolute

Pl = total inlet pump pressure (or possibly cen[erl[ne of pump)

P2 = total outlet pump pressure

Pv = vapor pressure of liquid

UNIT SYST EMS. See System of Units.
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VELOCITY PRESSURE

VELOCITY PRESSURE. A fluid moving at velocity v possesses a kinetic

energy I<E as shown in the following figure. When brought to rest by an

impact tube, the energy becomes flow energy FE and exerts a velocity

pressure Pv" Conversion is then made to potential energy PE as in the

figure.

I<E

m_

v

PE
FE

I<E TO PE CONVERSION

FE : KE

] mv 2
PV-

2 gc

Pv : eloeity pressure

2 gc 2\g c/

Alternately KE = PE

!fm]v iwv2
2\gc/ 2 g

be.a,.e.=

Pv : --:
g

(_) Ibmwhere p = : mass density, f-_
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,. VIBRATION

VIBRATION. For vibration of fluids Ns, confined by walls w having

radius R and length L, Chamberlain {25) gives the following. Usual

notation is employed with vf and vw the velocity of sound in fluid and

walls respectively and P the pressure of sound. The vibration effect

VE is presumably equal to I. The energy absorption E is defined as

mv 2 where m is the mass and v is the spatial maximum mean square

flex_ral velocity of the section under study.

ft _h

(pf Ibm_c Ibm_ d ft)f.._] (pw fta ] (R e

Elbm s---_c2] ibf s e c 2]

lbf 0 = a - j j --- a

ibm 0 =c+ d+ i+ j c=-d-i-a

sec 0 =-b - g -h - 2i - 2j

=-b - g -h- 2i - 2a b = -g - h - 2i - 2a

ft 0 = -2a - 3c - 3d+ e+ f+ g+ h+ 2i+ j

= -2a(+ 3d + 3i + 3a) - 3d + e + f + g + h + 2i + a

= 2a+ e+ f+ g+ h+ 5i e = -Za - f - g - h - 5i

VE = C(P} a(Ns) -g - h - 2i - 2a(pf)-d - i - a(pw}d(R}-2a - f - g - h - 5i

(L) f (Vw)g (vf) h (E) i (gc }a

f Pgc )a _w_d_L_f_ v _gf vf _hw =c \N:  fR' \R/ \NsR/ \NsR/ 2 R5s Pf

VISCOSITY. In the literature the symbol _t is generally used to represent

viscosity, regardless of the units in which it is expressed. In this text,

subscripts are added to indicate viscosity expressed in particular units.

Fundamentally, viscosity is defined as a shear-force or stress required

per unit area to produce a velocity-gradient or shear-rate expressed as

a unit-change of velocity at a unit-distance from another shear plane as

shown in the figure.
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VISCOSITY

V

ft

sec

A ft 2

....... lbf s ec ....

_ _ ft2 --_ L ft

Aft 2

Ill/Ill/

F Ibf

In order to avoid inertia effects, the fluid is considered to be in laminar

(also known as streamline or viscous) flow. Thus the engineering units

are:

lbf_

Viscosity (  ear
v . __ec/elocity gradient L-_/

' ibf )shear stress

hear rate t s_ec_]
\ per ft L ft /

_f shear force ibfper ]

nit area of plane ft2/

= per =

uunit velocity of plane 1
per

nit dist from next plane/

_!lbfforce1
1 ft2 area /

(b lbf°rce_/ft distance_ [ {lbf_(ft secl]: f_a--LTeaIIft -I : _f
]\-s-_ec velocity/ \ft2 ] \ ft I

: lU: ec1
A Newtonian fluid is one in which the viscosity ix is independent of the

fluid velocity v.

Viscosity is fundamentally a drag or shear force and should be expressed

in force units as is done in the SI International System of units. Considered

as an isolated dimension or property, to express it in terms of an amount

of matter tends to obscure its true nature. It therefore appears best to

distinguish _f from _m and to use _f in force units in dimensional analysis,

a procedure different from conventional procedures.

200



VISCOSITY

Viscosity is sometimes called absolute or dynamic viscosity to distinguish
it from a so-called kinematic viscosity = (viscosity/density), a designation
that should be avoided as unnecessary.

For the notation of the figure the shear force F required to pull the moving
plane of A ft 2at a velocity v ft per see at a distance L from the fixed plane
Aft 2is given by:

v

F Ibf = _A L

(_f Ibf sec_ ft2)(v s_c)
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VISCOSITY

VISCOSITY CONVERSION

_f

Symbol
And Units

In This Text

Ibf sec

ft2

ibm

PUs ft sec 2

Ibf hr

_h ft2

I 7
ibm ft 1

Equivalent where gc = 32.Z ibf sec 2'

_Cp centipoises

= (metric unit)

_7) ft2sec

= (kinematic

viscosity)

Ibm )}Im ft hr gcp centipoises

sec_ (32.2 ibm ft._ - 47800 centipoises_3600YT-rJ I%77Jc2) (Ibfsech
\

-- --h_r] f ft_ " Ibf sec 2

Ibm
7F17/

2.42
= (_Cp centipoises) _ (centipoise) [

(
• = " centipoises"

= _f )t-_ ] 2 2 ib-fs_-c 2] 1488 llbm \

|
\ft sec]

(_f Ibf sec_ft 2 ]

= }_Cp =cm sec p poises

k
= (IDr)

Cp

(M Ibm h ibf sec_ ibm fts,r c.j_ j
(p lbm_ - lbm_

_00 centipoise)polse

Comments On

Symbol Of

Column i

_f is basic

preferred

unit•

Frequently used.

Undesirable

force quantity

expressed in

mass units.

Undesirable•

Express as

Zfgc"

Undesirable.

Express as

_f

IForce expressed

in mass units.

Undesirable.

Express as

_f gc
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WAVES

WATT. See under 5oule Per Sec.

WAVES ON SURFACE. This was treated as a special case under the

Fluid Flow Domain to obtain:

L wavelength_H height ]= fcn (Fr We}

Waves• For waves on the surface of liquids Ipsen (4, p. 166} gives:

(Fr) = (We) p

where:

This may be

L) _ (wavelength)
(depth of liquid)

written in terms of Bond Number.

Bo = /Bond Number
/ !

\Dimensionles s]

\Tgc ] T w

i TL

g

= (____) _ (gravityforce)- (surface tension force}

WEBER NUMBER. This parameter introduces the effect of surface tension
T.

(We) = (Weber Number_
\Dimensionless ]

_ 9v 2D

Tgc

(p Ibm_ ft2 _(L ft)ft 3 ] (v2 sec 2]

ft/ zz• Ibf sec 2
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WEBER NUMBER

The significant length dimension is given as L. In a particular
application other lengths may be more applicable. Sometimes a
diameter D is appropriate.

Surface-tension phenomena are involved in wave motion.

(We) as a force ratio. This parameter expresses the ratio of the inertial

force or force of acceleration required to accelerate a particle of fluid

to the surface tension force on the surface of the fluid (24, p. 93, 28,

p. 168). The Weber Number is therefore applicable to moving fluids

having a surface.

We =
(force of acceleration)

(force of surface tension) TL

a

mL_ vL

T gc\ /

(We) as a pressure ratio. For a bubble relation velocity of bubble and

surrounding fluid produces a velocity process. Surface tension produces

an internal pressure.

(We) =
8(inertia pressure)

(surface tension pressure)

(velocity pressure)

(surface tension pressure)

8(velocity pressure at surface of bubble)

(inside bubble pressure due to surface tension)

__) - Tg c

WEIGHT. A mass under force due to the attraction of gravity tends to

accelerate in a downward direction. Its weight is determined by Newton

acceleration law written as a unit-consistent equation in engineering

units.

In general

F = a
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WEIGHT

Under gravity

w = g or =

w lbf = - _ft-] 2.2

2. Z lb-f se_2-/

whe re

w = weight, lbw

= force downward, Ibf

On the surface of the earth where g = 32.2 ft/sec 2 an amount of mass

1 ibm exerts a force downward of l ibf. At other locations 1 lbm will

have a different numerical value of weight lbm= ibf downward.
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